
MySQL
Replication

www.EngineeringBooksPdf.com

Abstract

This is the MySQL Replication extract from the MySQL 5.5 Reference Manual.

For legal information, see the Legal Notices.

For help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists, where you can discuss
your issues with other MySQL users.

For additional documentation on MySQL products, including translations of the documentation into other languages,
and downloadable versions in variety of formats, including HTML and PDF formats, see the MySQL Documentation
Library.

Licensing information—MySQL 5.5. This product may include third-party software, used under license. If you are
using a Commercial release of MySQL 5.5, see this document for licensing information, including licensing information
relating to third-party software that may be included in this Commercial release. If you are using a Community release
of MySQL 5.5, see this document for licensing information, including licensing information relating to third-party
software that may be included in this Community release.

Licensing information—MySQL Cluster NDB 7.2. This product may include third-party software, used
under license. If you are using a Commercial release of MySQL Cluster NDB 7.2, see this document for licensing
information, including licensing information relating to third-party software that may be included in this Commercial
release. If you are using a Community release of MySQL Cluster NDB 7.2, see this document for licensing
information, including licensing information relating to third-party software that may be included in this Community
release.

Document generated on: 2017-04-27 (revision: 51909)

www.EngineeringBooksPdf.com

http://forums.mysql.com
http://lists.mysql.com
http://dev.mysql.com/doc
http://dev.mysql.com/doc
http://downloads.mysql.com/docs/licenses/mysqld-5.5-com-en.pdf
http://downloads.mysql.com/docs/licenses/mysqld-5.5-gpl-en.pdf
http://downloads.mysql.com/docs/licenses/cluster-7.2-com-en.pdf
http://downloads.mysql.com/docs/licenses/cluster-7.2-gpl-en.pdf

iii

Table of Contents
Preface and Legal Notices .. v
1 Replication .. 1
2 Replication Configuration ... 3

2.1 How to Set Up Replication .. 4
2.1.1 Setting the Replication Master Configuration ... 5
2.1.2 Setting the Replication Slave Configuration ... 6
2.1.3 Creating a User for Replication .. 6
2.1.4 Obtaining the Replication Master Binary Log Coordinates .. 7
2.1.5 Creating a Data Snapshot Using mysqldump .. 8
2.1.6 Creating a Data Snapshot Using Raw Data Files .. 8
2.1.7 Setting Up Replication with New Master and Slaves .. 9
2.1.8 Setting Up Replication with Existing Data .. 10
2.1.9 Introducing Additional Slaves to an Existing Replication Environment 12
2.1.10 Setting the Master Configuration on the Slave ... 13

2.2 Replication Formats .. 13
2.2.1 Advantages and Disadvantages of Statement-Based and Row-Based Replication 14
2.2.2 Usage of Row-Based Logging and Replication .. 17
2.2.3 Determination of Safe and Unsafe Statements in Binary Logging 19

2.3 Replication and Binary Logging Options and Variables ... 21
2.3.1 Replication and Binary Logging Option and Variable Reference 21
2.3.2 Replication Master Options and Variables ... 35
2.3.3 Replication Slave Options and Variables ... 39
2.3.4 Binary Log Options and Variables .. 64

2.4 Common Replication Administration Tasks .. 78
2.4.1 Checking Replication Status ... 78
2.4.2 Pausing Replication on the Slave ... 80

3 Replication Solutions ... 83
3.1 Using Replication for Backups ... 83

3.1.1 Backing Up a Slave Using mysqldump ... 84
3.1.2 Backing Up Raw Data from a Slave ... 85
3.1.3 Backing Up a Master or Slave by Making It Read Only .. 85

3.2 Using Replication with Different Master and Slave Storage Engines 87
3.3 Using Replication for Scale-Out ... 88
3.4 Replicating Different Databases to Different Slaves .. 90
3.5 Improving Replication Performance ... 91
3.6 Switching Masters During Failover ... 92
3.7 Setting Up Replication to Use Secure Connections .. 94
3.8 Semisynchronous Replication .. 96

3.8.1 Semisynchronous Replication Administrative Interface ... 97
3.8.2 Semisynchronous Replication Installation and Configuration 98
3.8.3 Semisynchronous Replication Monitoring ... 100

4 Replication Notes and Tips .. 103
4.1 Replication Features and Issues .. 103

4.1.1 Replication and AUTO_INCREMENT .. 104
4.1.2 Replication and BLACKHOLE Tables .. 105
4.1.3 Replication and Character Sets .. 105
4.1.4 Replication and CHECKSUM TABLE .. 105
4.1.5 Replication of CREATE ... IF NOT EXISTS Statements .. 105
4.1.6 Replication of CREATE TABLE ... SELECT Statements ... 106
4.1.7 Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER 107
4.1.8 Replication of CURRENT_USER() .. 107

www.EngineeringBooksPdf.com

MySQL Replication

iv

4.1.9 Replication of DROP ... IF EXISTS Statements .. 107
4.1.10 Replication with Differing Table Definitions on Master and Slave 108
4.1.11 Replication and DIRECTORY Table Options .. 113
4.1.12 Replication of Invoked Features .. 114
4.1.13 Replication and Floating-Point Values ... 115
4.1.14 Replication and FLUSH .. 116
4.1.15 Replication and System Functions .. 116
4.1.16 Replication and LIMIT .. 118
4.1.17 Replication and LOAD DATA INFILE .. 118
4.1.18 Replication and the Slow Query Log ... 118
4.1.19 Replication and Partitioning .. 119
4.1.20 Replication and REPAIR TABLE ... 119
4.1.21 Replication and Master or Slave Shutdowns .. 119
4.1.22 Replication and max_allowed_packet .. 120
4.1.23 Replication and MEMORY Tables ... 120
4.1.24 Replication and Temporary Tables .. 121
4.1.25 Replication of the mysql System Database .. 121
4.1.26 Replication and the Query Optimizer ... 121
4.1.27 Replication and Reserved Words .. 122
4.1.28 SET PASSWORD and Row-Based Replication .. 122
4.1.29 Slave Errors During Replication .. 122
4.1.30 Replication of Server-Side Help Tables ... 123
4.1.31 Replication and Server SQL Mode .. 125
4.1.32 Replication Retries and Timeouts .. 125
4.1.33 Replication and TIMESTAMP .. 125
4.1.34 Replication and Time Zones ... 125
4.1.35 Replication and Transactions .. 125
4.1.36 Replication and Triggers ... 127
4.1.37 Replication and TRUNCATE TABLE ... 127
4.1.38 Replication and Variables ... 128
4.1.39 Replication and Views .. 129

4.2 Replication Compatibility Between MySQL Versions ... 130
4.3 Upgrading a Replication Setup .. 131
4.4 Troubleshooting Replication .. 132
4.5 How to Report Replication Bugs or Problems ... 133

5 Replication Implementation .. 135
5.1 Replication Implementation Details .. 135
5.2 Replication Relay and Status Logs .. 137

5.2.1 The Slave Relay Log ... 137
5.2.2 Slave Status Logs .. 138

5.3 How Servers Evaluate Replication Filtering Rules ... 140
5.3.1 Evaluation of Database-Level Replication and Binary Logging Options 141
5.3.2 Evaluation of Table-Level Replication Options ... 143
5.3.3 Replication Rule Application ... 145

www.EngineeringBooksPdf.com

v

Preface and Legal Notices
This is the MySQL Replication extract from the MySQL 5.5 Reference Manual.

Legal Notices

Copyright © 1997, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks
of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

www.EngineeringBooksPdf.com

Legal Notices

vi

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish
or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

www.EngineeringBooksPdf.com

1

Chapter 1 Replication

Replication enables data from one MySQL database server (the master) to be replicated to one or more
MySQL database servers (the slaves). Replication is asynchronous by default, therefore slaves do not
need to be connected permanently to receive updates from the master. This means that updates can occur
over long-distance connections and even over temporary or intermittent connections such as a dial-up
service. Depending on the configuration, you can replicate all databases, selected databases, or even
selected tables within a database.

For answers to some questions often asked by those who are new to MySQL Replication, see MySQL 5.5
FAQ: Replication.

Advantages of replication in MySQL include:

• Scale-out solutions - spreading the load among multiple slaves to improve performance. In this
environment, all writes and updates must take place on the master server. Reads, however, may take
place on one or more slaves. This model can improve the performance of writes (since the master is
dedicated to updates), while dramatically increasing read speed across an increasing number of slaves.

• Data security - because data is replicated to the slave, and the slave can pause the replication process,
it is possible to run backup services on the slave without corrupting the corresponding master data.

• Analytics - live data can be created on the master, while the analysis of the information can take place
on the slave without affecting the performance of the master.

• Long-distance data distribution - if a branch office would like to work with a copy of your main data, you
can use replication to create a local copy of the data for their use without requiring permanent access to
the master.

Replication in MySQL features support for one-way, asynchronous replication, in which one server acts
as the master, while one or more other servers act as slaves. This is in contrast to the synchronous
replication which is a characteristic of NDB Cluster (see MySQL NDB Cluster 7.2). In MySQL 5.5, an
interface to semisynchronous replication is supported in addition to the built-in asynchronous replication.
With semisynchronous replication, a commit performed on the master side blocks before returning to the
session that performed the transaction until at least one slave acknowledges that it has received and
logged the events for the transaction. See Section 3.8, “Semisynchronous Replication”

There are a number of solutions available for setting up replication between two servers, but the best
method to use depends on the presence of data and the engine types you are using. For more information
on the available options, see Section 2.1, “How to Set Up Replication”.

There are two core types of replication format, Statement Based Replication (SBR), which replicates entire
SQL statements, and Row Based Replication (RBR), which replicates only the changed rows. You may
also use a third variety, Mixed Based Replication (MBR). For more information on the different replication
formats, see Section 2.2, “Replication Formats”. In MySQL 5.5, statement-based format is the default.

Replication is controlled through a number of different options and variables. These control the core
operation of the replication, timeouts, and the databases and filters that can be applied on databases and
tables. For more information on the available options, see Section 2.3, “Replication and Binary Logging
Options and Variables”.

You can use replication to solve a number of different problems, including problems with performance,
supporting the backup of different databases, and as part of a larger solution to alleviate system failures.
For information on how to address these issues, see Chapter 3, Replication Solutions.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/faqs-replication.html
http://dev.mysql.com/doc/refman/5.5/en/faqs-replication.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster.html

2

For notes and tips on how different data types and statements are treated during replication, including
details of replication features, version compatibility, upgrades, and problems and their resolution, including
an FAQ, see Chapter 4, Replication Notes and Tips.

For detailed information on the implementation of replication, how replication works, the process and
contents of the binary log, background threads and the rules used to decide how statements are recorded
and replication, see Chapter 5, Replication Implementation.

www.EngineeringBooksPdf.com

3

Chapter 2 Replication Configuration

Table of Contents
2.1 How to Set Up Replication .. 4

2.1.1 Setting the Replication Master Configuration ... 5
2.1.2 Setting the Replication Slave Configuration ... 6
2.1.3 Creating a User for Replication .. 6
2.1.4 Obtaining the Replication Master Binary Log Coordinates .. 7
2.1.5 Creating a Data Snapshot Using mysqldump .. 8
2.1.6 Creating a Data Snapshot Using Raw Data Files .. 8
2.1.7 Setting Up Replication with New Master and Slaves .. 9
2.1.8 Setting Up Replication with Existing Data .. 10
2.1.9 Introducing Additional Slaves to an Existing Replication Environment 12
2.1.10 Setting the Master Configuration on the Slave ... 13

2.2 Replication Formats .. 13
2.2.1 Advantages and Disadvantages of Statement-Based and Row-Based Replication 14
2.2.2 Usage of Row-Based Logging and Replication .. 17
2.2.3 Determination of Safe and Unsafe Statements in Binary Logging .. 19

2.3 Replication and Binary Logging Options and Variables ... 21
2.3.1 Replication and Binary Logging Option and Variable Reference .. 21
2.3.2 Replication Master Options and Variables ... 35
2.3.3 Replication Slave Options and Variables ... 39
2.3.4 Binary Log Options and Variables .. 64

2.4 Common Replication Administration Tasks .. 78
2.4.1 Checking Replication Status ... 78
2.4.2 Pausing Replication on the Slave ... 80

Replication between servers in MySQL is based on the binary logging mechanism. The MySQL instance
operating as the master (the source of the database changes) writes updates and changes as “events”
to the binary log. The information in the binary log is stored in different logging formats according to the
database changes being recorded. Slaves are configured to read the binary log from the master and to
execute the events in the binary log on the slave's local database.

The master is “dumb” in this scenario. Once binary logging has been enabled, all statements are recorded
in the binary log. Each slave receives a copy of the entire contents of the binary log. It is the responsibility
of the slave to decide which statements in the binary log should be executed; you cannot configure the
master to log only certain events. If you do not specify otherwise, all events in the master binary log
are executed on the slave. If required, you can configure the slave to process only events that apply to
particular databases or tables.

Each slave keeps a record of the binary log coordinates: The file name and position within the file that it
has read and processed from the master. This means that multiple slaves can be connected to the master
and executing different parts of the same binary log. Because the slaves control this process, individual
slaves can be connected and disconnected from the server without affecting the master's operation.
Also, because each slave remembers the position within the binary log, it is possible for slaves to be
disconnected, reconnect and then “catch up” by continuing from the recorded position.

Both the master and each slave must be configured with a unique ID (using the server-id option). In
addition, each slave must be configured with information about the master host name, log file name, and
position within that file. These details can be controlled from within a MySQL session using the CHANGE
MASTER TO statement on the slave. The details are stored within the slave's master.info file.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/change-master-to.html
http://dev.mysql.com/doc/refman/5.5/en/change-master-to.html

How to Set Up Replication

4

This section describes the setup and configuration required for a replication environment, including step-
by-step instructions for creating a new replication environment. The major components of this section are:

• For a guide to setting up two or more servers for replication, Section 2.1, “How to Set Up Replication”,
deals with the configuration of the systems and provides methods for copying data between the master
and slaves.

• Events in the binary log are recorded using a number of formats. These are referred to as statement-
based replication (SBR) or row-based replication (RBR). A third type, mixed-format replication (MIXED),
uses SBR or RBR replication automatically to take advantage of the benefits of both SBR and RBR
formats when appropriate. The different formats are discussed in Section 2.2, “Replication Formats”.

• Detailed information on the different configuration options and variables that apply to replication is
provided in Section 2.3, “Replication and Binary Logging Options and Variables”.

• Once started, the replication process should require little administration or monitoring. However,
for advice on common tasks that you may want to execute, see Section 2.4, “Common Replication
Administration Tasks”.

2.1 How to Set Up Replication
This section describes how to set up complete replication of a MySQL server. There are a number of
different methods for setting up replication, and the exact method to use depends on how you are setting
up replication, and whether you already have data within your master database.

There are some generic tasks that are common to all replication setups:

• On the master, you must enable binary logging and configure a unique server ID. This might require a
server restart. See Section 2.1.1, “Setting the Replication Master Configuration”.

• On each slave that you want to connect to the master, you must configure a unique server ID. This might
require a server restart. See Section 2.1.2, “Setting the Replication Slave Configuration”.

• You may want to create a separate user that will be used by your slaves to authenticate with the master
to read the binary log for replication. The step is optional. See Section 2.1.3, “Creating a User for
Replication”.

• Before creating a data snapshot or starting the replication process, you should record the position
of the binary log on the master. You will need this information when configuring the slave so that the
slave knows where within the binary log to start executing events. See Section 2.1.4, “Obtaining the
Replication Master Binary Log Coordinates”.

• If you already have data on your master and you want to use it to synchronize your slave, you will need
to create a data snapshot. You can create a snapshot using mysqldump (see Section 2.1.5, “Creating
a Data Snapshot Using mysqldump”) or by copying the data files directly (see Section 2.1.6, “Creating a
Data Snapshot Using Raw Data Files”).

• You will need to configure the slave with settings for connecting to the master, such as the host name,
login credentials, and binary log file name and position. See Section 2.1.10, “Setting the Master
Configuration on the Slave”.

Once you have configured the basic options, you will need to follow the instructions for your replication
setup. A number of alternatives are provided:

• If you are establishing a new MySQL master and one or more slaves, you need only set up the
configuration, as you have no data to exchange. For guidance on setting up replication in this situation,
see Section 2.1.7, “Setting Up Replication with New Master and Slaves”.

www.EngineeringBooksPdf.com

Setting the Replication Master Configuration

5

• If you are already running a MySQL server, and therefore already have data that must be transferred
to your slaves before replication starts, have not previously configured the binary log and are able to
shut down your MySQL server for a short period during the process, see Section 2.1.8, “Setting Up
Replication with Existing Data”.

• If you are adding slaves to an existing replication environment, you can set up the slaves without
affecting the master. See Section 2.1.9, “Introducing Additional Slaves to an Existing Replication
Environment”.

If you will be administering MySQL replication servers, we suggest that you read this entire chapter through
and try all statements mentioned in SQL Statements for Controlling Master Servers, and SQL Statements
for Controlling Slave Servers. You should also familiarize yourself with the replication startup options
described in Section 2.3, “Replication and Binary Logging Options and Variables”.

Note

Note that certain steps within the setup process require the SUPER privilege. If you
do not have this privilege, it might not be possible to enable replication.

2.1.1 Setting the Replication Master Configuration

On a replication master, you must enable binary logging and establish a unique server ID. If this has not
already been done, this part of master setup requires a server restart.

Binary logging must be enabled on the master because the binary log is the basis for sending data
changes from the master to its slaves. If binary logging is not enabled, replication will not be possible.

Each server within a replication group must be configured with a unique server ID. This ID is used to
identify individual servers within the group, and must be a positive integer between 1 and (232)−1. How you
organize and select the numbers is entirely up to you.

To configure the binary log and server ID options, you will need to shut down your MySQL server and edit
the my.cnf or my.ini file. Add the following options to the configuration file within the [mysqld] section.
If these options already exist, but are commented out, uncomment the options and alter them according
to your needs. For example, to enable binary logging using a log file name prefix of mysql-bin, and
configure a server ID of 1, use these lines:

[mysqld]
log-bin=mysql-bin
server-id=1

After making the changes, restart the server.

Note

If you omit server-id (or set it explicitly to its default value of 0), a master refuses
connections from all slaves.

Note

For the greatest possible durability and consistency in a
replication setup using InnoDB with transactions, you should use
innodb_flush_log_at_trx_commit=1 and sync_binlog=1 in the master
my.cnf file.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/replication-master-sql.html
http://dev.mysql.com/doc/refman/5.5/en/replication-slave-sql.html
http://dev.mysql.com/doc/refman/5.5/en/replication-slave-sql.html
http://dev.mysql.com/doc/refman/5.5/en/privileges-provided.html#priv_super

Setting the Replication Slave Configuration

6

Note

Ensure that the skip-networking option is not enabled on your replication
master. If networking has been disabled, your slave will not able to communicate
with the master and replication will fail.

2.1.2 Setting the Replication Slave Configuration

On a replication slave, you must establish a unique server ID. If this has not already been done, this part of
slave setup requires a server restart.

If the slave server ID is not already set, or the current value conflicts with the value that you have chosen
for the master server, you should shut down your slave server and edit the configuration to specify a
unique server ID. For example:

[mysqld]
server-id=2

After making the changes, restart the server.

If you are setting up multiple slaves, each one must have a unique server-id value that differs from that
of the master and from each of the other slaves. Think of server-id values as something similar to IP
addresses: These IDs uniquely identify each server instance in the community of replication partners.

Note

If you omit server-id (or set it explicitly to its default value of 0), a slave refuses
to connect to a master.

You do not have to enable binary logging on the slave for replication to be enabled. However, if you enable
binary logging on the slave, you can use the binary log for data backups and crash recovery on the slave,
and also use the slave as part of a more complex replication topology (for example, where the slave acts
as a master to other slaves).

2.1.3 Creating a User for Replication

Each slave must connect to the master using a MySQL user name and password, so there must be a
user account on the master that the slave can use to connect. Any account can be used for this operation,
providing it has been granted the REPLICATION SLAVE privilege. You may wish to create a different
account for each slave, or connect to the master using the same account for each slave.

You need not create an account specifically for replication. However, you should be aware that the user
name and password will be stored in plain text within the master.info file (see Section 5.2.2, “Slave
Status Logs”). Therefore, you may want to create a separate account that has privileges only for the
replication process, to minimize the possibility of compromise to other accounts.

To create a new account, use CREATE USER. To grant this account the privileges required for replication,
use the GRANT statement. If you create an account solely for the purposes of replication, that account
needs only the REPLICATION SLAVE privilege. For example, to set up a new user, repl, that can
connect for replication from any host within the mydomain.com domain, issue these statements on the
master:

mysql> CREATE USER 'repl'@'%.mydomain.com' IDENTIFIED BY 'slavepass';
mysql> GRANT REPLICATION SLAVE ON *.* TO 'repl'@'%.mydomain.com';

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_skip-networking
http://dev.mysql.com/doc/refman/5.5/en/privileges-provided.html#priv_replication-slave
http://dev.mysql.com/doc/refman/5.5/en/create-user.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/privileges-provided.html#priv_replication-slave

Obtaining the Replication Master Binary Log Coordinates

7

See Account Management Statements, for more information on statements for manipulation of user
accounts.

2.1.4 Obtaining the Replication Master Binary Log Coordinates

To configure replication on the slave you must determine the master's current coordinates within its binary
log. You will need this information so that when the slave starts the replication process, it is able to start
processing events from the binary log at the correct point.

If you have existing data on your master that you want to synchronize on your slaves before starting the
replication process, you must stop processing statements on the master, and then obtain its current binary
log coordinates and dump its data, before permitting the master to continue executing statements. If you do
not stop the execution of statements, the data dump and the master status information that you use will not
match and you will end up with inconsistent or corrupted databases on the slaves.

To obtain the master binary log coordinates, follow these steps:

1. Start a session on the master by connecting to it with the command-line client, and flush all tables and
block write statements by executing the FLUSH TABLES WITH READ LOCK statement:

mysql> FLUSH TABLES WITH READ LOCK;

For InnoDB tables, note that FLUSH TABLES WITH READ LOCK also blocks COMMIT operations.

Warning

Leave the client from which you issued the FLUSH TABLES statement running
so that the read lock remains in effect. If you exit the client, the lock is released.

2. In a different session on the master, use the SHOW MASTER STATUS statement to determine the
current binary log file name and position:

mysql > SHOW MASTER STATUS;
+------------------+----------+--------------+------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |
+------------------+----------+--------------+------------------+
| mysql-bin.000003 | 73 | test | manual,mysql |
+------------------+----------+--------------+------------------+

The File column shows the name of the log file and Position shows the position within the file. In
this example, the binary log file is mysql-bin.000003 and the position is 73. Record these values.
You need them later when you are setting up the slave. They represent the replication coordinates at
which the slave should begin processing new updates from the master.

If the master has been running previously without binary logging enabled, the log file name and position
values displayed by SHOW MASTER STATUS or mysqldump --master-data will be empty. In that
case, the values that you need to use later when specifying the slave's log file and position are the
empty string ('') and 4.

You now have the information you need to enable the slave to start reading from the binary log in the
correct place to start replication.

If you have existing data that needs be to synchronized with the slave before you start replication, leave
the client running so that the lock remains in place and then proceed to Section 2.1.5, “Creating a Data
Snapshot Using mysqldump”, or Section 2.1.6, “Creating a Data Snapshot Using Raw Data Files”. The
idea here is to prevent any further changes so that the data copied to the slaves is in synchrony with the
master.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/account-management-sql.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/commit.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/show-master-status.html
http://dev.mysql.com/doc/refman/5.5/en/show-master-status.html

Creating a Data Snapshot Using mysqldump

8

If you are setting up a brand new master and slave replication group, you can exit the first session to
release the read lock.

2.1.5 Creating a Data Snapshot Using mysqldump

One way to create a snapshot of the data in an existing master database is to use the mysqldump tool to
create a dump of all the databases you want to replicate. Once the data dump has been completed, you
then import this data into the slave before starting the replication process.

The example shown here dumps all databases to a file named dbdump.db, and includes the --master-
data option which automatically appends the CHANGE MASTER TO statement required on the slave to
start the replication process:

shell> mysqldump --all-databases --master-data > dbdump.db

If you do not use --master-data, then it is necessary to lock all tables in a separate session manually
(using FLUSH TABLES WITH READ LOCK) prior to running mysqldump, then exiting or running UNLOCK
TABLES from the second session to release the locks. You must also obtain binary log position information
matching the snapshot, using SHOW MASTER STATUS, and use this to issue the appropriate CHANGE
MASTER TO statement when starting the slave.

When choosing databases to include in the dump, remember that you need to filter out databases on each
slave that you do not want to include in the replication process.

To import the data, either copy the dump file to the slave, or access the file from the master when
connecting remotely to the slave.

2.1.6 Creating a Data Snapshot Using Raw Data Files

If your database is large, copying the raw data files can be more efficient than using mysqldump and
importing the file on each slave. This technique skips the overhead of updating indexes as the INSERT
statements are replayed.

Using this method with tables in storage engines with complex caching or logging algorithms requires
extra steps to produce a perfect “point in time” snapshot: the initial copy command might leave out cache
information and logging updates, even if you have acquired a global read lock. How the storage engine
responds to this depends on its crash recovery abilities.

This method also does not work reliably if the master and slave have different values for
ft_stopword_file, ft_min_word_len, or ft_max_word_len and you are copying tables having full-
text indexes.

If you use InnoDB tables, you can use the mysqlbackup command from the MySQL Enterprise
Backup component to produce a consistent snapshot. This command records the log name and offset
corresponding to the snapshot to be later used on the slave. MySQL Enterprise Backup is a commercial
product that is included as part of a MySQL Enterprise subscription. See MySQL Enterprise Backup
Overview for detailed information.

Otherwise, use the cold backup technique to obtain a reliable binary snapshot of InnoDB tables: copy all
data files after doing a slow shutdown of the MySQL Server.

To create a raw data snapshot of MyISAM tables, you can use standard copy tools such as cp or copy, a
remote copy tool such as scp or rsync, an archiving tool such as zip or tar, or a file system snapshot
tool such as dump, providing that your MySQL data files exist on a single file system. If you are replicating
only certain databases, copy only those files that relate to those tables. (For InnoDB, all tables in all

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_master-data
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_master-data
http://dev.mysql.com/doc/refman/5.5/en/change-master-to.html
http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html#option_mysqldump_master-data
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/show-master-status.html
http://dev.mysql.com/doc/refman/5.5/en/change-master-to.html
http://dev.mysql.com/doc/refman/5.5/en/change-master-to.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_ft_stopword_file
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_ft_min_word_len
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_ft_max_word_len
http://dev.mysql.com/doc/refman/5.5/en/innodb-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-enterprise-backup.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-enterprise-backup.html
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_cold_backup
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_slow_shutdown

Setting Up Replication with New Master and Slaves

9

databases are stored in the system tablespace files, unless you have the innodb_file_per_table
option enabled.)

You might want to specifically exclude the following files from your archive:

• Files relating to the mysql database.

• The master.info file.

• The master's binary log files.

• Any relay log files.

To get the most consistent results with a raw data snapshot, shut down the master server during the
process, as follows:

1. Acquire a read lock and get the master's status. See Section 2.1.4, “Obtaining the Replication Master
Binary Log Coordinates”.

2. In a separate session, shut down the master server:

shell> mysqladmin shutdown

3. Make a copy of the MySQL data files. The following examples show common ways to do this. You need
to choose only one of them:

shell> tar cf /tmp/db.tar ./data
shell> zip -r /tmp/db.zip ./data
shell> rsync --recursive ./data /tmp/dbdata

4. Restart the master server.

If you are not using InnoDB tables, you can get a snapshot of the system from a master without shutting
down the server as described in the following steps:

1. Acquire a read lock and get the master's status. See Section 2.1.4, “Obtaining the Replication Master
Binary Log Coordinates”.

2. Make a copy of the MySQL data files. The following examples show common ways to do this. You need
to choose only one of them:

shell> tar cf /tmp/db.tar ./data
shell> zip -r /tmp/db.zip ./data
shell> rsync --recursive ./data /tmp/dbdata

3. In the client where you acquired the read lock, release the lock:

mysql> UNLOCK TABLES;

Once you have created the archive or copy of the database, copy the files to each slave before starting the
slave replication process.

2.1.7 Setting Up Replication with New Master and Slaves

The easiest and most straightforward method for setting up replication is to use new master and slave
servers.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_system_tablespace
http://dev.mysql.com/doc/refman/5.5/en/innodb-parameters.html#sysvar_innodb_file_per_table

Setting Up Replication with Existing Data

10

You can also use this method if you are setting up new servers but have an existing dump of the
databases from a different server that you want to load into your replication configuration. By loading the
data into a new master, the data will be automatically replicated to the slaves.

To set up replication between a new master and slave:

1. Configure the MySQL master with the necessary configuration properties. See Section 2.1.1, “Setting
the Replication Master Configuration”.

2. Start up the MySQL master.

3. Set up a user. See Section 2.1.3, “Creating a User for Replication”.

4. Obtain the master status information. See Section 2.1.4, “Obtaining the Replication Master Binary Log
Coordinates”.

5. On the master, release the read lock:

mysql> UNLOCK TABLES;

6. On the slave, edit the MySQL configuration. See Section 2.1.2, “Setting the Replication Slave
Configuration”.

7. Start up the MySQL slave.

8. Execute a CHANGE MASTER TO statement to set the master replication server configuration. See
Section 2.1.10, “Setting the Master Configuration on the Slave”.

Perform the slave setup steps on each slave.

Because there is no data to load or exchange on a new server configuration you do not need to copy or
import any information.

If you are setting up a new replication environment using the data from a different existing database
server, you will now need to run the dump file generated from that server on the new master. The database
updates will automatically be propagated to the slaves:

shell> mysql -h master < fulldb.dump

2.1.8 Setting Up Replication with Existing Data

When setting up replication with existing data, you will need to decide how best to get the data from the
master to the slave before starting the replication service.

The basic process for setting up replication with existing data is as follows:

1. With the MySQL master running, create a user to be used by the slave when connecting to the master
during replication. See Section 2.1.3, “Creating a User for Replication”.

2. If you have not already configured the server-id and enabled binary logging on the master server,
you will need to shut it down to configure these options. See Section 2.1.1, “Setting the Replication
Master Configuration”.

If you have to shut down your master server, this is a good opportunity to take a snapshot of its
databases. You should obtain the master status (see Section 2.1.4, “Obtaining the Replication Master
Binary Log Coordinates”) before taking down the master, updating the configuration and taking
a snapshot. For information on how to create a snapshot using raw data files, see Section 2.1.6,
“Creating a Data Snapshot Using Raw Data Files”.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/change-master-to.html

Setting Up Replication with Existing Data

11

3. If your master server is already correctly configured, obtain its status (see Section 2.1.4, “Obtaining
the Replication Master Binary Log Coordinates”) and then use mysqldump to take a snapshot (see
Section 2.1.5, “Creating a Data Snapshot Using mysqldump”) or take a raw snapshot of the live server
using the guide in Section 2.1.6, “Creating a Data Snapshot Using Raw Data Files”.

4. Update the configuration of the slave. See Section 2.1.2, “Setting the Replication Slave Configuration”.

5. The next step depends on how you created the snapshot of data on the master.

If you used mysqldump:

a. Start the slave, using the --skip-slave-start option so that replication does not start.

b. Import the dump file:

shell> mysql < fulldb.dump

If you created a snapshot using the raw data files:

a. Extract the data files into your slave data directory. For example:

shell> tar xvf dbdump.tar

You may need to set permissions and ownership on the files so that the slave server can access
and modify them.

b. Start the slave, using the --skip-slave-start option so that replication does not start.

6. Configure the slave with the replication coordinates from the master. This tells the slave the binary log
file and position within the file where replication needs to start. Also, configure the slave with the login
credentials and host name of the master. For more information on the CHANGE MASTER TO statement
required, see Section 2.1.10, “Setting the Master Configuration on the Slave”.

7. Start the slave threads:

mysql> START SLAVE;

After you have performed this procedure, the slave should connect to the master and catch up on any
updates that have occurred since the snapshot was taken.

If you have forgotten to set the server-id option for the master, slaves cannot connect to it.

If you have forgotten to set the server-id option for the slave, you get the following error in the slave's
error log:

Warning: You should set server-id to a non-0 value if master_host
is set; we will force server id to 2, but this MySQL server will
not act as a slave.

You also find error messages in the slave's error log if it is not able to replicate for any other reason.

Once a slave is replicating, you can find in its data directory one file named master.info and another
named relay-log.info. The slave uses these two files to keep track of how much of the master's binary
log it has processed. Do not remove or edit these files unless you know exactly what you are doing and
fully understand the implications. Even in that case, it is preferred that you use the CHANGE MASTER TO

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/change-master-to.html
http://dev.mysql.com/doc/refman/5.5/en/change-master-to.html

Introducing Additional Slaves to an Existing Replication Environment

12

statement to change replication parameters. The slave will use the values specified in the statement to
update the status files automatically.

Note

The content of master.info overrides some of the server options specified on
the command line or in my.cnf. See Section 2.3, “Replication and Binary Logging
Options and Variables”, for more details.

A single snapshot of the master suffices for multiple slaves. To set up additional slaves, use the same
master snapshot and follow the slave portion of the procedure just described.

2.1.9 Introducing Additional Slaves to an Existing Replication Environment

To add another slave to an existing replication configuration, you can do so without stopping the master.
Instead, set up the new slave by making a copy of an existing slave, except that you configure the new
slave with a different server-id value.

To duplicate an existing slave:

1. Shut down the existing slave:

shell> mysqladmin shutdown

2. Copy the data directory from the existing slave to the new slave. You can do this by creating an archive
using tar or WinZip, or by performing a direct copy using a tool such as cp or rsync. Ensure that
you also copy the log files and relay log files.

A common problem that is encountered when adding new replication slaves is that the new slave fails
with a series of warning and error messages like these:

071118 16:44:10 [Warning] Neither --relay-log nor --relay-log-index were used; so
replication may break when this MySQL server acts as a slave and has his hostname
changed!! Please use '--relay-log=new_slave_hostname-relay-bin' to avoid this problem.
071118 16:44:10 [ERROR] Failed to open the relay log './old_slave_hostname-relay-bin.003525'
(relay_log_pos 22940879)
071118 16:44:10 [ERROR] Could not find target log during relay log initialization
071118 16:44:10 [ERROR] Failed to initialize the master info structure

This is due to the fact that, if the --relay-log option is not specified, the relay log files contain the
host name as part of their file names. (This is also true of the relay log index file if the --relay-log-
index option is not used. See Section 2.3, “Replication and Binary Logging Options and Variables”, for
more information about these options.)

To avoid this problem, use the same value for --relay-log on the new slave that was
used on the existing slave. (If this option was not set explicitly on the existing slave, use
existing_slave_hostname-relay-bin.) If this is not feasible, copy the existing slave's relay
log index file to the new slave and set the --relay-log-index option on the new slave to match
what was used on the existing slave. (If this option was not set explicitly on the existing slave, use
existing_slave_hostname-relay-bin.index.) Alternatively—if you have already tried to start
the new slave (after following the remaining steps in this section) and have encountered errors like
those described previously—then perform the following steps:

a. If you have not already done so, issue a STOP SLAVE on the new slave.

If you have already started the existing slave again, issue a STOP SLAVE on the existing slave as
well.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/stop-slave.html
http://dev.mysql.com/doc/refman/5.5/en/stop-slave.html

Setting the Master Configuration on the Slave

13

b. Copy the contents of the existing slave's relay log index file into the new slave's relay log index file,
making sure to overwrite any content already in the file.

c. Proceed with the remaining steps in this section.

3. Copy the master.info and relay-log.info files from the existing slave to the new slave if they
were not located in the data directory. These files hold the current log coordinates for the master's
binary log and the slave's relay log.

4. Start the existing slave.

5. On the new slave, edit the configuration and give the new slave a unique server-id not used by the
master or any of the existing slaves.

6. Start the new slave. The slave will use the information in its master.info file to start the replication
process.

2.1.10 Setting the Master Configuration on the Slave

To set up the slave to communicate with the master for replication, you must tell the slave the necessary
connection information. To do this, execute the following statement on the slave, replacing the option
values with the actual values relevant to your system:

mysql> CHANGE MASTER TO
 -> MASTER_HOST='master_host_name',
 -> MASTER_USER='replication_user_name',
 -> MASTER_PASSWORD='replication_password',
 -> MASTER_LOG_FILE='recorded_log_file_name',
 -> MASTER_LOG_POS=recorded_log_position;

Note

Replication cannot use Unix socket files. You must be able to connect to the master
MySQL server using TCP/IP.

The CHANGE MASTER TO statement has other options as well. For example, it is possible to set up secure
replication using SSL. For a full list of options, and information about the maximum permissible length for
the string-valued options, see CHANGE MASTER TO Syntax.

2.2 Replication Formats

Replication works because events written to the binary log are read from the master and then processed
on the slave. The events are recorded within the binary log in different formats according to the type of
event. The different replication formats used correspond to the binary logging format used when the events
were recorded in the master's binary log. The correlation between binary logging formats and the terms
used during replication are:

• Replication capabilities in MySQL originally were based on propagation of SQL statements from master
to slave. This is called statement-based replication (often abbreviated as SBR), which corresponds to the
standard statement-based binary logging format. In older versions of MySQL (5.1.4 and earlier), binary
logging and replication used this format exclusively.

• Row-based binary logging logs changes in individual table rows. When used with MySQL replication,
this is known as row-based replication (often abbreviated as RBR). In row-based replication, the master
writes events to the binary log that indicate how individual table rows are changed.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/change-master-to.html
http://dev.mysql.com/doc/refman/5.5/en/change-master-to.html

Advantages and Disadvantages of Statement-Based and Row-Based Replication

14

• The server can change the binary logging format in real time according to the type of event using mixed-
format logging.

When the mixed format is in effect, statement-based logging is used by default, but automatically
switches to row-based logging in particular cases as described later. Replication using the mixed format
is often referred to as mixed-based replication or mixed-format replication. For more information, see
Mixed Binary Logging Format.

In MySQL 5.5, statement-based format is the default.

NDB Cluster. The default binary logging format in all MySQL NDB Cluster 7.2 releases, beginning with
MySQL NDB Cluster 7.2.1, is STATEMENT. (This is a change from previous versions of NDB Cluster.) You
should note that NDB Cluster Replication always uses row-based replication, and that the NDB storage
engine is incompatible with statement-based replication. This means that you must manually set the format
to ROW prior to enabling NDB Cluster Replication. See General Requirements for NDB Cluster Replication,
for more information.

When using MIXED format, the binary logging format is determined in part by the storage engine being
used and the statement being executed. For more information on mixed-format logging and the rules
governing the support of different logging formats, see Mixed Binary Logging Format.

The logging format in a running MySQL server is controlled by setting the binlog_format server system
variable. This variable can be set with session or global scope. The rules governing when and how the
new setting takes effect are the same as for other MySQL server system variables—setting the variable for
the current session lasts only until the end of that session, and the change is not visible to other sessions;
setting the variable globally requires a restart of the server to take effect. For more information, see SET
Syntax for Variable Assignment.

There are conditions under which you cannot change the binary logging format at runtime or doing so
causes replication to fail. See Setting The Binary Log Format.

You must have the SUPER privilege to set either the global or session binlog_format value.

The statement-based and row-based replication formats have different issues and limitations. For
a comparison of their relative advantages and disadvantages, see Section 2.2.1, “Advantages and
Disadvantages of Statement-Based and Row-Based Replication”.

With statement-based replication, you may encounter issues with replicating stored routines or triggers.
You can avoid these issues by using row-based replication instead. For more information, see Binary
Logging of Stored Programs.

2.2.1 Advantages and Disadvantages of Statement-Based and Row-Based
Replication

Each binary logging format has advantages and disadvantages. For most users, the mixed replication
format should provide the best combination of data integrity and performance. If, however, you want to
take advantage of the features specific to the statement-based or row-based replication format when
performing certain tasks, you can use the information in this section, which provides a summary of their
relative advantages and disadvantages, to determine which is best for your needs.

• Advantages of statement-based replication

• Disadvantages of statement-based replication

• Advantages of row-based replication

• Disadvantages of row-based replication

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/binary-log-mixed.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster-replication-general.html
http://dev.mysql.com/doc/refman/5.5/en/binary-log-mixed.html
http://dev.mysql.com/doc/refman/5.5/en/set-variable.html
http://dev.mysql.com/doc/refman/5.5/en/set-variable.html
http://dev.mysql.com/doc/refman/5.5/en/binary-log-setting.html
http://dev.mysql.com/doc/refman/5.5/en/privileges-provided.html#priv_super
http://dev.mysql.com/doc/refman/5.5/en/stored-programs-logging.html
http://dev.mysql.com/doc/refman/5.5/en/stored-programs-logging.html

Advantages and Disadvantages of Statement-Based and Row-Based Replication

15

Advantages of statement-based replication

• Proven technology.

• Less data written to log files. When updates or deletes affect many rows, this results in much less
storage space required for log files. This also means that taking and restoring from backups can be
accomplished more quickly.

• Log files contain all statements that made any changes, so they can be used to audit the database.

Disadvantages of statement-based replication

• Statements that are unsafe for SBR.
Not all statements which modify data (such as INSERT DELETE, UPDATE, and REPLACE statements)
can be replicated using statement-based replication. Any nondeterministic behavior is difficult to
replicate when using statement-based replication. Examples of such DML (Data Modification Language)
statements include the following:

• A statement that depends on a UDF or stored program that is nondeterministic, since the value
returned by such a UDF or stored program or depends on factors other than the parameters supplied
to it. (Row-based replication, however, simply replicates the value returned by the UDF or stored
program, so its effect on table rows and data is the same on both the master and slave.) See
Section 4.1.12, “Replication of Invoked Features”, for more information.

• DELETE and UPDATE statements that use a LIMIT clause without an ORDER BY are nondeterministic.
See Section 4.1.16, “Replication and LIMIT”.

• Statements using any of the following functions cannot be replicated properly using statement-based
replication:

• LOAD_FILE()

• UUID(), UUID_SHORT()

• USER()

• FOUND_ROWS()

• SYSDATE() (unless both the master and the slave are started with the --sysdate-is-now option)

• GET_LOCK()

• IS_FREE_LOCK()

• IS_USED_LOCK()

• MASTER_POS_WAIT()

• RAND()

• RELEASE_LOCK()

• SLEEP()

• VERSION()

However, all other functions are replicated correctly using statement-based replication, including
NOW() and so forth.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/delete.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/replace.html
http://dev.mysql.com/doc/refman/5.5/en/delete.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/string-functions.html#function_load-file
http://dev.mysql.com/doc/refman/5.5/en/miscellaneous-functions.html#function_uuid
http://dev.mysql.com/doc/refman/5.5/en/miscellaneous-functions.html#function_uuid-short
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_user
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_found-rows
http://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html#function_sysdate
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_sysdate-is-now
http://dev.mysql.com/doc/refman/5.5/en/miscellaneous-functions.html#function_get-lock
http://dev.mysql.com/doc/refman/5.5/en/miscellaneous-functions.html#function_is-free-lock
http://dev.mysql.com/doc/refman/5.5/en/miscellaneous-functions.html#function_is-used-lock
http://dev.mysql.com/doc/refman/5.5/en/miscellaneous-functions.html#function_master-pos-wait
http://dev.mysql.com/doc/refman/5.5/en/mathematical-functions.html#function_rand
http://dev.mysql.com/doc/refman/5.5/en/miscellaneous-functions.html#function_release-lock
http://dev.mysql.com/doc/refman/5.5/en/miscellaneous-functions.html#function_sleep
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_version
http://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html#function_now

Advantages and Disadvantages of Statement-Based and Row-Based Replication

16

For more information, see Section 4.1.15, “Replication and System Functions”.

Statements that cannot be replicated correctly using statement-based replication are logged with a
warning like the one shown here:

[Warning] Statement is not safe to log in statement format.

A similar warning is also issued to the client in such cases. The client can display it using SHOW
WARNINGS.

• INSERT ... SELECT requires a greater number of row-level locks than with row-based replication.

• UPDATE statements that require a table scan (because no index is used in the WHERE clause) must lock
a greater number of rows than with row-based replication.

• For InnoDB: An INSERT statement that uses AUTO_INCREMENT blocks other nonconflicting INSERT
statements.

• For complex statements, the statement must be evaluated and executed on the slave before the rows
are updated or inserted. With row-based replication, the slave only has to modify the affected rows, not
execute the full statement.

• If there is an error in evaluation on the slave, particularly when executing complex statements,
statement-based replication may slowly increase the margin of error across the affected rows over time.
See Section 4.1.29, “Slave Errors During Replication”.

• Stored functions execute with the same NOW() value as the calling statement. However, this is not true
of stored procedures.

• Deterministic UDFs must be applied on the slaves.

• Table definitions must be (nearly) identical on master and slave. See Section 4.1.10, “Replication with
Differing Table Definitions on Master and Slave”, for more information.

Advantages of row-based replication

• All changes can be replicated. This is the safest form of replication.

The mysql database is not replicated. The mysql database is instead seen as a node-specific
database. Row-based replication is not supported on tables in this database. Instead, statements that
would normally update this information—such as GRANT, REVOKE and the manipulation of triggers,
stored routines (including stored procedures), and views—are all replicated to slaves using statement-
based replication.

For statements such as CREATE TABLE ... SELECT, a CREATE statement is generated from the table
definition and replicated using statement-based format, while the row insertions are replicated using row-
based format.

• The technology is the same as in most other database management systems; knowledge about other
systems transfers to MySQL.

• Fewer row locks are required on the master, which thus achieves higher concurrency, for the following
types of statements:

• INSERT ... SELECT

• INSERT statements with AUTO_INCREMENT

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/show-warnings.html
http://dev.mysql.com/doc/refman/5.5/en/show-warnings.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html#function_now
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/revoke.html
http://dev.mysql.com/doc/refman/5.5/en/create-table.html
http://dev.mysql.com/doc/refman/5.5/en/insert-select.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html

Usage of Row-Based Logging and Replication

17

• UPDATE or DELETE statements with WHERE clauses that do not use keys or do not change most of the
examined rows.

• Fewer row locks are required on the slave for any INSERT, UPDATE, or DELETE statement.

Disadvantages of row-based replication

• RBR tends to generate more data that must be logged. To replicate a DML statement (such as an
UPDATE or DELETE statement), statement-based replication writes only the statement to the binary log.
By contrast, row-based replication writes each changed row to the binary log. If the statement changes
many rows, row-based replication may write significantly more data to the binary log; this is true even
for statements that are rolled back. This also means that taking and restoring from backup can require
more time. In addition, the binary log is locked for a longer time to write the data, which may cause
concurrency problems.

• Deterministic UDFs that generate large BLOB values take longer to replicate with row-based replication
than with statement-based replication. This is because the BLOB column value is logged, rather than the
statement generating the data.

• You cannot examine the logs to see what statements were executed, nor can you see on the slave what
statements were received from the master and executed.

However, you can see what data was changed using mysqlbinlog with the options --base64-
output=DECODE-ROWS and --verbose.

• For tables using the MyISAM storage engine, a stronger lock is required on the slave for INSERT
statements when applying them as row-based events to the binary log than when applying them as
statements. This means that concurrent inserts on MyISAM tables are not supported when using row-
based replication.

2.2.2 Usage of Row-Based Logging and Replication

Major changes in the replication environment and in the behavior of applications can result from using row-
based logging (RBL) or row-based replication (RBR) rather than statement-based logging or replication.
This section describes a number of issues known to exist when using row-based logging or replication, and
discusses some best practices for taking advantage of row-based logging and replication.

For additional information, see Section 2.2, “Replication Formats”, and Section 2.2.1, “Advantages and
Disadvantages of Statement-Based and Row-Based Replication”.

For information about issues specific to NDB Cluster Replication (which depends on row-based
replication), see Known Issues in NDB Cluster Replication.

• RBL, RBR, and temporary tables. As noted in Section 4.1.24, “Replication and Temporary Tables”,
temporary tables are not replicated when using row-based format. When mixed format is in effect, “safe”
statements involving temporary tables are logged using statement-based format. For more information,
see Section 2.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”.

Temporary tables are not replicated when using row-based format because there is no need. In addition,
because temporary tables can be read only from the thread which created them, there is seldom if ever
any benefit obtained from replicating them, even when using statement-based format.

Beginning with MySQL 5.5.5, you can switch from statement-based to row-based binary logging mode
even when temporary tables have been created. However, while using the row-based format, the
MySQL server cannot determine the logging mode that was in effect when a given temporary table
was created. For this reason, the server in such cases logs a DROP TEMPORARY TABLE IF EXISTS

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/delete.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/delete.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/delete.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/mysqlbinlog.html#option_mysqlbinlog_base64-output
http://dev.mysql.com/doc/refman/5.5/en/mysqlbinlog.html#option_mysqlbinlog_base64-output
http://dev.mysql.com/doc/refman/5.5/en/mysqlbinlog.html#option_mysqlbinlog_verbose
http://dev.mysql.com/doc/refman/5.5/en/myisam-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/myisam-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster-replication-issues.html
http://dev.mysql.com/doc/refman/5.5/en/drop-table.html

Usage of Row-Based Logging and Replication

18

statement for each temporary table that still exists for a given client session when that session ends.
(Bug #11760229, Bug #11762267) While this means that it is possible that an unnecessary DROP
TEMPORARY TABLE statement might be logged in some cases, the statement is harmless, and does not
cause an error even if the table does not exist, due to the presence of the IF EXISTS option.

• RBL and synchronization of nontransactional tables. When many rows are affected, the set of
changes is split into several events; when the statement commits, all of these events are written to the
binary log. When executing on the slave, a table lock is taken on all tables involved, and then the rows
are applied in batch mode. (This may or may not be effective, depending on the engine used for the
slave's copy of the table.)

• Latency and binary log size. Because RBL writes changes for each row to the binary log, its size
can increase quite rapidly. In a replication environment, this can significantly increase the time required
to make changes on the slave that match those on the master. You should be aware of the potential for
this delay in your applications.

• Reading the binary log. mysqlbinlog displays row-based events in the binary log using the
BINLOG statement (see BINLOG Syntax). This statement displays an event in printable form, but as
a base 64-encoded string the meaning of which is not evident. When invoked with the --base64-
output=DECODE-ROWS and --verbose options, mysqlbinlog formats the contents of the binary log
in a manner that is easily human readable. This is helpful when binary log events were written in row-
based format if you want to read or recover from a replication or database failure using the contents of
the binary log. For more information, see mysqlbinlog Row Event Display.

• Binary log execution errors and slave_exec_mode. If slave_exec_mode is IDEMPOTENT, a
failure to apply changes from RBL because the original row cannot be found does not trigger an error or
cause replication to fail. This means that it is possible that updates are not applied on the slave, so that
the master and slave are no longer synchronized. Latency issues and use of nontransactional tables with
RBR when slave_exec_mode is IDEMPOTENT can cause the master and slave to diverge even further.
For more information about slave_exec_mode, see Server System Variables.

Note

slave_exec_mode=IDEMPOTENT is generally useful only for circular replication
or multi-master replication with NDB Cluster, for which IDEMPOTENT is the default
value (see NDB Cluster Replication).

For other scenarios, setting slave_exec_mode to STRICT is normally sufficient;
this is the default value for storage engines other than NDB.

• Lack of binary log checksums. RBL uses no checksums. This means that network, disk, and other
errors may not be identified when processing the binary log. To ensure that data is transmitted without
network corruption, you may want to consider using SSL, which adds another layer of checksumming,
for replication connections. The CHANGE MASTER TO statement has options to enable replication over
SSL. See also CHANGE MASTER TO Syntax, for general information about setting up MySQL with
SSL.

• Filtering based on server ID not supported. A common practice is to filter out changes on some
slaves by using a WHERE clause that includes the relation @@server_id <> id_value clause with
UPDATE and DELETE statements, a simple example of such a clause being WHERE @@server_id
<> 1. However, this does not work correctly with row-based logging. If you must use the server_id
system variable for statement filtering, you must also use --binlog_format=STATEMENT.

In MySQL 5.5, you can do filtering based on server ID by using the IGNORE_SERVER_IDS option for the
CHANGE MASTER TO statement. This option works with the statement-based and row-based logging
formats.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/binlog.html
http://dev.mysql.com/doc/refman/5.5/en/mysqlbinlog.html#option_mysqlbinlog_base64-output
http://dev.mysql.com/doc/refman/5.5/en/mysqlbinlog.html#option_mysqlbinlog_base64-output
http://dev.mysql.com/doc/refman/5.5/en/mysqlbinlog.html#option_mysqlbinlog_verbose
http://dev.mysql.com/doc/refman/5.5/en/mysqlbinlog-row-events.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster-replication.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.5/en/change-master-to.html
http://dev.mysql.com/doc/refman/5.5/en/change-master-to.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/delete.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_server_id
http://dev.mysql.com/doc/refman/5.5/en/change-master-to.html

Determination of Safe and Unsafe Statements in Binary Logging

19

• Database-level replication options. The effects of the --replicate-do-db, --replicate-
ignore-db, and --replicate-rewrite-db options differ considerably depending on whether row-
based or statement-based logging is used. Because of this, it is recommended to avoid database-level
options and instead use table-level options such as --replicate-do-table and --replicate-
ignore-table. For more information about these options and the impact that your choice of replication
format has on how they operate, see Section 2.3, “Replication and Binary Logging Options and
Variables”.

• RBL, nontransactional tables, and stopped slaves. When using row-based logging, if the slave
server is stopped while a slave thread is updating a nontransactional table, the slave database may
reaches an inconsistent state. For this reason, it is recommended that you use a transactional storage
engine such as InnoDB for all tables replicated using the row-based format.

Use of STOP SLAVE (or STOP SLAVE SQL_THREAD in MySQL 5.5.9 and later) prior to shutting
down the slave MySQL server helps prevent such issues from occurring, and is always recommended
regardless of the logging format or storage engines employed.

2.2.3 Determination of Safe and Unsafe Statements in Binary Logging

When speaking of the “safeness” of a statement in MySQL Replication, we are referring to whether a
statement and its effects can be replicated correctly using statement-based format. If this is true of the
statement, we refer to the statement as safe; otherwise, we refer to it as unsafe.

In general, a statement is safe if it deterministic, and unsafe if it is not. However, certain nondeterministic
functions are not considered unsafe (see Nondeterministic functions not considered unsafe, later in this
section). In addition, statements using results from floating-point math functions—which are hardware-
dependent—are always considered unsafe (see Section 4.1.13, “Replication and Floating-Point Values”).

Handling of safe and unsafe statements. A statement is treated differently depending on whether the
statement is considered safe, and with respect to the binary logging format (that is, the current value of
binlog_format).

• No distinction is made in the treatment of safe and unsafe statements when the binary logging mode is
ROW.

• If the binary logging format is MIXED, statements flagged as unsafe are logged using the row-based
format; statements regarded as safe are logged using the statement-based format.

• If the binary logging format is STATEMENT, statements flagged as being unsafe generate a warning to
this effect. (Safe statements are logged normally.)

Each statement flagged as unsafe generates a warning. Formerly, in cases where a great many such
statements were executed on the master, this could lead to very large error log files, sometimes even filling
up an entire disk unexpectedly. To guard against this, MySQL 5.5.27 introduced a warning suppression
mechanism, which behaves as follows: Whenever the 50 most recent ER_BINLOG_UNSAFE_STATEMENT
warnings have been generated more than 50 times in any 50-second period, warning suppression is
enabled. When activated, this causes such warnings not to be written to the error log; instead, for each 50
warnings of this type, a note The last warning was repeated N times in last S seconds
is written to the error log. This continues as long as the 50 most recent such warnings were issued in 50
seconds or less; once the rate has decreased below this threshold, the warnings are once again logged
normally. Warning suppression has no effect on how the safety of statements for statement-based logging
is determined, nor on how warnings are sent to the client (MySQL clients still receive one warning for each
such statement).

For more information, see Section 2.2, “Replication Formats”.

Statements considered unsafe.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/innodb-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/stop-slave.html
http://dev.mysql.com/doc/refman/5.5/en/stop-slave.html
http://dev.mysql.com/doc/refman/5.5/en/error-messages-server.html#error_er_binlog_unsafe_statement

Determination of Safe and Unsafe Statements in Binary Logging

20

Statements having the following characteristics are considered unsafe:

• Statements containing system functions that may return a different value on slave.
These functions include FOUND_ROWS(), GET_LOCK(), IS_FREE_LOCK(), IS_USED_LOCK(),
LOAD_FILE(), MASTER_POS_WAIT(), RAND(), RELEASE_LOCK(), ROW_COUNT(),
SESSION_USER(), SLEEP(), SYSDATE(), SYSTEM_USER(), USER(), UUID(), and UUID_SHORT().

Nondeterministic functions not considered unsafe. Although these functions are not deterministic,
they are treated as safe for purposes of logging and replication: CONNECTION_ID(), CURDATE(),
CURRENT_DATE(), CURRENT_TIME(), CURRENT_TIMESTAMP(), CURTIME(), LOCALTIME(),
LOCALTIMESTAMP(), NOW(), UNIX_TIMESTAMP(), UTC_DATE(), UTC_TIME(), UTC_TIMESTAMP(),
and LAST_INSERT_ID()

For more information, see Section 4.1.15, “Replication and System Functions”.

• References to system variables. Most system variables are not replicated correctly using the
statement-based format. For exceptions, see Mixed Binary Logging Format.

See Section 4.1.38, “Replication and Variables”.

• UDFs. Since we have no control over what a UDF does, we must assume that it is executing unsafe
statements.

• Updates a table having an AUTO_INCREMENT column. Prior to MySQL 5.5.3, all such statements
were always considered unsafe because the order in which the rows are updated could differ on the
master and the slave. In MySQL 5.3.3 and later, these statements are unsafe only when they are
executed by a trigger or stored program (Bug #50192, Bug #11758052).

An INSERT into a table that has a composite primary key containing an AUTO_INCREMENT column that
is not the first column of this composite key is unsafe.

For more information, see Section 4.1.1, “Replication and AUTO_INCREMENT”.

• INSERT DELAYED statement. This statement is considered unsafe because the insertion of the
rows may interleave with concurrently executing statements.

• INSERT ... ON DUPLICATE KEY UPDATE statements on tables with multiple primary or unique
keys. When executed against a table that contains more than one primary or unique key, this
statement is considered unsafe, being sensitive to the order in which the storage engine checks
the keys, which is not deterministic, and on which the choice of rows updated by the MySQL Server
depends.

An INSERT ... ON DUPLICATE KEY UPDATE statement against a table having more than one
unique or primary key is marked as unsafe for statement-based replication beginning with MySQL
5.5.24. (Bug #11765650, Bug #58637)

• Updates using LIMIT. The order in which rows are retrieved is not specified.

See Section 4.1.16, “Replication and LIMIT”.

• Accesses or references log tables. The contents of the system log table may differ between master
and slave.

• Nontransactional operations after transactional operations. Within a transaction, allowing any
nontransactional reads or writes to execute after any transactional reads or writes is considered unsafe.

For more information, see Section 4.1.35, “Replication and Transactions”.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_found-rows
http://dev.mysql.com/doc/refman/5.5/en/miscellaneous-functions.html#function_get-lock
http://dev.mysql.com/doc/refman/5.5/en/miscellaneous-functions.html#function_is-free-lock
http://dev.mysql.com/doc/refman/5.5/en/miscellaneous-functions.html#function_is-used-lock
http://dev.mysql.com/doc/refman/5.5/en/string-functions.html#function_load-file
http://dev.mysql.com/doc/refman/5.5/en/miscellaneous-functions.html#function_master-pos-wait
http://dev.mysql.com/doc/refman/5.5/en/mathematical-functions.html#function_rand
http://dev.mysql.com/doc/refman/5.5/en/miscellaneous-functions.html#function_release-lock
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_row-count
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_session-user
http://dev.mysql.com/doc/refman/5.5/en/miscellaneous-functions.html#function_sleep
http://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html#function_sysdate
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_system-user
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_user
http://dev.mysql.com/doc/refman/5.5/en/miscellaneous-functions.html#function_uuid
http://dev.mysql.com/doc/refman/5.5/en/miscellaneous-functions.html#function_uuid-short
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_connection-id
http://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html#function_curdate
http://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html#function_current-date
http://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html#function_current-time
http://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html#function_current-timestamp
http://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html#function_curtime
http://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html#function_localtime
http://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html#function_localtimestamp
http://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html#function_now
http://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html#function_unix-timestamp
http://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html#function_utc-date
http://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html#function_utc-time
http://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html#function_utc-timestamp
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_last-insert-id
http://dev.mysql.com/doc/refman/5.5/en/binary-log-mixed.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/insert-on-duplicate.html

Replication and Binary Logging Options and Variables

21

• Accesses or references self-logging tables. All reads and writes to self-logging tables are
considered unsafe. Within a transaction, any statement following a read or write to self-logging tables is
also considered unsafe.

• LOAD DATA INFILE statements. Beginning with MySQL 5.5.6, LOAD DATA INFILE is treated
as unsafe and when binlog_format=mixed the statement is logged in row-based format. When
binlog_format=statement LOAD DATA INFILE does not generate a warning, unlike other unsafe
statements.

For additional information, see Section 4.1, “Replication Features and Issues”.

2.3 Replication and Binary Logging Options and Variables
The next few sections contain information about mysqld options and server variables that are used in
replication and for controlling the binary log. Options and variables for use on replication masters and
replication slaves are covered separately, as are options and variables relating to binary logging. A set of
quick-reference tables providing basic information about these options and variables is also included (in
the next section following this one).

 Of particular importance is the --server-id option.

Command-Line Format --server-id=#

Name server_id

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

4294967295

This option is common to both master and slave replication servers, and is used in replication to enable
master and slave servers to identify themselves uniquely. For additional information, see Section 2.3.2,
“Replication Master Options and Variables”, and Section 2.3.3, “Replication Slave Options and Variables”.

On the master and each slave, you must use the --server-id option to establish a unique replication ID
in the range from 1 to 232 − 1. “Unique”, means that each ID must be different from every other ID in use by
any other replication master or slave. Example: server-id=3.

If you omit --server-id, the default ID is 0, in which case the master refuses connections from all
slaves, and slaves refuse to connect to the master. In MySQL 5.5, whether the server ID is set to 0
explicitly or the default is allowed to be used, the server sets the server_id system variable to 1; this is a
known issue that is fixed in MySQL 5.7.

For more information, see Section 2.1.2, “Setting the Replication Slave Configuration”.

2.3.1 Replication and Binary Logging Option and Variable Reference

The following tables list basic information about the MySQL command-line options and system variables
applicable to replication and the binary log.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_server_id

Replication and Binary Logging Option and Variable Reference

22

Table 2.1 Summary of Replication options and variables in MySQL 5.5

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

abort-slave-event-count

Yes No No

Yes No

DESCRIPTION: Option used by mysql-test for debugging and testing of replication

Com_change_master

No No Yes

No Both No

DESCRIPTION: Count of CHANGE MASTER TO statements

Com_show_master_status

No No Yes

No Both No

DESCRIPTION: Count of SHOW MASTER STATUS statements

Com_show_new_master

No No Yes

No Both No

DESCRIPTION: Count of SHOW NEW MASTER statements

Com_show_slave_hosts

No No Yes

No Both No

DESCRIPTION: Count of SHOW SLAVE HOSTS statements

Com_show_slave_status

No No Yes

No Both No

DESCRIPTION: Count of SHOW SLAVE STATUS statements

Com_slave_start

No No Yes

No Both No

DESCRIPTION: Count of START SLAVE statements

Com_slave_stop

No No Yes

No Both No

DESCRIPTION: Count of STOP SLAVE statements

disconnect-slave-event-count

Yes No No

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Com_xxx
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Com_xxx
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Com_xxx
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Com_xxx
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Com_xxx
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Com_xxx
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Com_xxx

Replication and Binary Logging Option and Variable Reference

23

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

Yes No

DESCRIPTION: Option used by mysql-test for debugging and testing of replication

init_slave

Yes Yes No

Yes Global Yes

DESCRIPTION: Statements that are executed when a slave connects to a master

log-slave-updates

Yes Yes No

Yes Global No

DESCRIPTION: Tells the slave to log the updates performed by its SQL thread to its own binary log

log_slave_updates

Yes Yes No

Yes Global No

DESCRIPTION: Whether the slave should log the updates performed by its SQL thread to its own binary
log. Read-only; set using the --log-slave-updates server option.

master-connect-retry

Yes No No

Yes No

DESCRIPTION: Number of seconds the slave thread will sleep before retrying to connect to the master
in case the master goes down or the connection is lost

master-host

Yes No No

Yes No

DESCRIPTION: Master host name or IP address for replication

master-info-file

Yes No No

Yes No

DESCRIPTION: The location and name of the file that remembers the master and where the I/O
replication thread is in the master's binary logs

master-password

Yes No No

Yes No

DESCRIPTION: The password the slave thread will authenticate with when connecting to master

master-port

Yes No No

Yes No

www.EngineeringBooksPdf.com

Replication and Binary Logging Option and Variable Reference

24

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

DESCRIPTION: The port the master is listening on

master-retry-count

Yes No No

Yes No

DESCRIPTION: Number of tries the slave makes to connect to the master before giving up

master-ssl

Yes No No

Yes No

DESCRIPTION: Enable the slave to connect to the master using SSL

master-ssl-ca

Yes No No

Yes No

DESCRIPTION: Master SSL CA file; applies only if master-ssl is enabled

master-ssl-capath

Yes No No

Yes No

DESCRIPTION: Master SSL CA path; applies only if master-ssl is enabled

master-ssl-cert

Yes No No

Yes No

DESCRIPTION: Master SSL certificate file name; applies only if master-ssl is enabled

master-ssl-cipher

Yes No No

Yes No

DESCRIPTION: Master SSL cipher; applies only if master-ssl is enabled

master-ssl-key

Yes No No

Yes No

DESCRIPTION: Master SSL key file name; applies only if master-ssl is enabled

master-user

Yes No No

Yes No

DESCRIPTION: The user name the slave thread will use for authentication when connecting to master.
The user must have FILE privilege. If the master user is not set, user test is assumed. The value in
master.info will take precedence if it can be read

relay-log

www.EngineeringBooksPdf.com

Replication and Binary Logging Option and Variable Reference

25

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

Yes Yes No

Yes Global No

DESCRIPTION: The location and base name to use for relay logs

relay-log-index

Yes Yes No

Yes Global No

DESCRIPTION: The location and name to use for the file that keeps a list of the last relay logs

relay-log-info-file

Yes No No

Yes No

DESCRIPTION: The location and name of the file that remembers where the SQL replication thread is in
the relay logs

relay-log-recovery

Yes No No

Yes No

DESCRIPTION: Enables automatic recovery of relay log files from master at startup

relay_log_index

Yes Yes No

Yes Global No

DESCRIPTION: The name of the relay log index file

relay_log_info_file

Yes Yes No

Yes Global No

DESCRIPTION: The name of the file in which the slave records information about the relay logs

relay_log_purge

Yes Yes No

Yes Global Yes

DESCRIPTION: Determines whether relay logs are purged

relay_log_recovery

Yes Yes No

Yes Global Yes

DESCRIPTION: Whether automatic recovery of relay log files from master at startup is enabled; must be
enabled for a crash-safe slave.

relay_log_space_limit

Yes Yes No

Yes Global No

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_relay_log_purge
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_relay_log_space_limit

Replication and Binary Logging Option and Variable Reference

26

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

DESCRIPTION: Maximum space to use for all relay logs

replicate-do-db

Yes No No

Yes No

DESCRIPTION: Tells the slave SQL thread to restrict replication to the specified database

replicate-do-table

Yes No No

Yes No

DESCRIPTION: Tells the slave SQL thread to restrict replication to the specified table

replicate-ignore-db

Yes No No

Yes No

DESCRIPTION: Tells the slave SQL thread not to replicate to the specified database

replicate-ignore-table

Yes No No

Yes No

DESCRIPTION: Tells the slave SQL thread not to replicate to the specified table

replicate-rewrite-db

Yes No No

Yes No

DESCRIPTION: Updates to a database with a different name than the original

replicate-same-server-id

Yes No No

Yes No

DESCRIPTION: In replication, if set to 1, do not skip events having our server id

replicate-wild-do-table

Yes No No

Yes No

DESCRIPTION: Tells the slave thread to restrict replication to the tables that match the specified
wildcard pattern

replicate-wild-ignore-table

Yes No No

Yes No

DESCRIPTION: Tells the slave thread not to replicate to the tables that match the given wildcard pattern

report-host

www.EngineeringBooksPdf.com

Replication and Binary Logging Option and Variable Reference

27

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

Yes Yes No

Yes Global No

DESCRIPTION: Host name or IP of the slave to be reported to the master during slave registration

report-password

Yes Yes No

Yes Global No

DESCRIPTION: An arbitrary password that the slave server should report to the master. Not the same as
the password for the MySQL replication user account.

report-port

Yes Yes No

Yes Global No

DESCRIPTION: Port for connecting to slave reported to the master during slave registration

report-user

Yes Yes No

Yes Global No

DESCRIPTION: An arbitrary user name that a slave server should report to the master. Not the same as
the name used with the MySQL replication user account.

rpl_recovery_rank

No Yes No

No Global Yes

DESCRIPTION: Not used; removed in later versions

Rpl_semi_sync_master_clients

No No Yes

No Global No

DESCRIPTION: Number of semisynchronous slaves

rpl_semi_sync_master_enabled

No Yes No

No Global Yes

DESCRIPTION: Whether semisynchronous replication is enabled on the master

Rpl_semi_sync_master_net_avg_wait_time

No No Yes

No Global No

DESCRIPTION: The average time the master waited for a slave reply

Rpl_semi_sync_master_net_wait_time

No No Yes

No Global No

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Rpl_semi_sync_master_clients
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_rpl_semi_sync_master_enabled
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Rpl_semi_sync_master_net_avg_wait_time
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Rpl_semi_sync_master_net_wait_time

Replication and Binary Logging Option and Variable Reference

28

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

DESCRIPTION: The total time the master waited for slave replies

Rpl_semi_sync_master_net_waits

No No Yes

No Global No

DESCRIPTION: The total number of times the master waited for slave replies

Rpl_semi_sync_master_no_times

No No Yes

No Global No

DESCRIPTION: Number of times the master turned off semisynchronous replication

Rpl_semi_sync_master_no_tx

No No Yes

No Global No

DESCRIPTION: Number of commits not acknowledged successfully

Rpl_semi_sync_master_status

No No Yes

No Global No

DESCRIPTION: Whether semisynchronous replication is operational on the master

Rpl_semi_sync_master_timefunc_failures

No No Yes

No Global No

DESCRIPTION: Number of times the master failed when calling time functions

rpl_semi_sync_master_timeout

No Yes No

No Global Yes

DESCRIPTION: Number of milliseconds to wait for slave acknowledgment

rpl_semi_sync_master_trace_level

No Yes No

No Global Yes

DESCRIPTION: The semisynchronous replication debug trace level on the master

Rpl_semi_sync_master_tx_avg_wait_time

No No Yes

No Global No

DESCRIPTION: The average time the master waited for each transaction

Rpl_semi_sync_master_tx_wait_time

No No Yes

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Rpl_semi_sync_master_net_waits
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Rpl_semi_sync_master_no_times
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Rpl_semi_sync_master_no_tx
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Rpl_semi_sync_master_status
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Rpl_semi_sync_master_timefunc_failures
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_rpl_semi_sync_master_timeout
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_rpl_semi_sync_master_trace_level
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Rpl_semi_sync_master_tx_avg_wait_time
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Rpl_semi_sync_master_tx_wait_time

Replication and Binary Logging Option and Variable Reference

29

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

No Global No

DESCRIPTION: The total time the master waited for transactions

Rpl_semi_sync_master_tx_waits

No No Yes

No Global No

DESCRIPTION: The total number of times the master waited for transactions

rpl_semi_sync_master_wait_no_slave

No Yes No

No Global Yes

DESCRIPTION: Whether master waits for timeout even with no slaves

Rpl_semi_sync_master_wait_pos_backtraverse

No No Yes

No Global No

DESCRIPTION: The total number of times the master waited for an event with binary coordinates lower
than events waited for previously

Rpl_semi_sync_master_wait_sessions

No No Yes

No Global No

DESCRIPTION: Number of sessions currently waiting for slave replies

Rpl_semi_sync_master_yes_tx

No No Yes

No Global No

DESCRIPTION: Number of commits acknowledged successfully

rpl_semi_sync_slave_enabled

No Yes No

No Global Yes

DESCRIPTION: Whether semisynchronous replication is enabled on slave

Rpl_semi_sync_slave_status

No No Yes

No Global No

DESCRIPTION: Whether semisynchronous replication is operational on slave

rpl_semi_sync_slave_trace_level

No Yes No

No Global Yes

DESCRIPTION: The semisynchronous replication debug trace level on the slave

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Rpl_semi_sync_master_tx_waits
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_rpl_semi_sync_master_wait_no_slave
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Rpl_semi_sync_master_wait_pos_backtraverse
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Rpl_semi_sync_master_wait_sessions
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Rpl_semi_sync_master_yes_tx
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_rpl_semi_sync_slave_enabled
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Rpl_semi_sync_slave_status
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_rpl_semi_sync_slave_trace_level

Replication and Binary Logging Option and Variable Reference

30

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

Rpl_status

No No Yes

No Global No

DESCRIPTION: The status of fail-safe replication (not implemented)

show-slave-auth-info

Yes No No

Yes No

DESCRIPTION: Show user name and password in SHOW SLAVE HOSTS on this master

skip-slave-start

Yes No No

Yes No

DESCRIPTION: If set, slave is not autostarted

slave-load-tmpdir

Yes Yes No

Yes Global No

DESCRIPTION: The location where the slave should put its temporary files when replicating a LOAD
DATA INFILE statement

slave-max-allowed-packet

Yes No No

Yes No

DESCRIPTION: Maximum size, in bytes, of a packet that can be sent from a replication master to a
slave; overrides max_allowed_packet.

slave_net_timeout

Yes Yes No

Yes Global Yes

DESCRIPTION: Number of seconds to wait for more data from a master/slave connection before
aborting the read

slave-skip-errors

Yes Yes No

Yes Global No

DESCRIPTION: Tells the slave thread to continue replication when a query returns an error from the
provided list

slave_compressed_protocol

Yes Yes No

Yes Global Yes

DESCRIPTION: Use compression on master/slave protocol

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Rpl_status

Replication and Binary Logging Option and Variable Reference

31

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

slave_exec_mode

Yes Yes No

Yes Global Yes

DESCRIPTION: Allows for switching the slave thread between IDEMPOTENT mode (key and some
other errors suppressed) and STRICT mode; STRICT mode is the default, except for NDB Cluster,
where IDEMPOTENT is always used

Slave_heartbeat_period

No No Yes

No Global No

DESCRIPTION: The slave's replication heartbeat interval, in seconds

slave_max_allowed_packet

No Yes No

No Global Yes

DESCRIPTION: Maximum size, in bytes, of a packet that can be sent from a replication master to a
slave; overrides max_allowed_packet.

Slave_open_temp_tables

No No Yes

No Global No

DESCRIPTION: Number of temporary tables that the slave SQL thread currently has open

Slave_retried_transactions

No No Yes

No Global No

DESCRIPTION: The total number of times since startup that the replication slave SQL thread has retried
transactions

Slave_running

No No Yes

No Global No

DESCRIPTION: The state of this server as a replication slave (slave I/O thread status)

slave_transaction_retries

Yes Yes No

Yes Global Yes

DESCRIPTION: Number of times the slave SQL thread will retry a transaction in case it failed with a
deadlock or elapsed lock wait timeout, before giving up and stopping

slave_type_conversions

Yes Yes No

Yes Global No

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Slave_heartbeat_period
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Slave_open_temp_tables
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Slave_retried_transactions
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Slave_running

Replication and Binary Logging Option and Variable Reference

32

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

DESCRIPTION: Controls type conversion mode on replication slave. Value is a list of zero or more
elements from the list: ALL_LOSSY, ALL_NON_LOSSY. Set to an empty string to disallow type
conversions between master and slave.

sql_slave_skip_counter

No Yes No

No Global Yes

DESCRIPTION: Number of events from the master that a slave server should skip. Not compatible with
GTID replication.

sync_binlog

Yes Yes No

Yes Global Yes

DESCRIPTION: Synchronously flush binary log to disk after every #th event

sync_master_info

Yes Yes No

Yes Global Yes

DESCRIPTION: Synchronize master.info to disk after every #th event.

sync_relay_log

Yes Yes No

Yes Global Yes

DESCRIPTION: Synchronize relay log to disk after every #th event.

sync_relay_log_info

Yes Yes No

Yes Global Yes

DESCRIPTION: Synchronize relay.info file to disk after every #th event.

Section 2.3.2, “Replication Master Options and Variables”, provides more detailed information about
options and variables relating to replication master servers. For more information about options and
variables relating to replication slaves, see Section 2.3.3, “Replication Slave Options and Variables”.

Table 2.2 Summary of Binary Logging options and variables in MySQL 5.5

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

binlog-do-db

Yes No No

Yes No

DESCRIPTION: Limits binary logging to specific databases

www.EngineeringBooksPdf.com

Replication and Binary Logging Option and Variable Reference

33

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

binlog_format

Yes Yes No

Yes Both Yes

DESCRIPTION: Specifies the format of the binary log

binlog-ignore-db

Yes No No

Yes No

DESCRIPTION: Tells the master that updates to the given database should not be logged to the binary
log

binlog-row-event-max-size

Yes No No

Yes No

DESCRIPTION: Binary log max event size

Binlog_cache_disk_use

No No Yes

No Global No

DESCRIPTION: Number of transactions that used a temporary file instead of the binary log cache

binlog_cache_size

Yes Yes No

Yes Global Yes

DESCRIPTION: Size of the cache to hold the SQL statements for the binary log during a transaction

Binlog_cache_use

No No Yes

No Global No

DESCRIPTION: Number of transactions that used the temporary binary log cache

binlog_direct_non_transactional_updates

Yes Yes No

Yes Both Yes

DESCRIPTION: Causes updates using statement format to nontransactional engines to be written
directly to binary log. See documentation before using.

Binlog_stmt_cache_disk_use

No No Yes

No Global No

DESCRIPTION: Number of nontransactional statements that used a temporary file instead of the binary
log statement cache

binlog_stmt_cache_size

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_binlog-format
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Binlog_cache_disk_use
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Binlog_cache_use
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Binlog_stmt_cache_disk_use

Replication and Binary Logging Option and Variable Reference

34

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

Yes Yes No

Yes Global Yes

DESCRIPTION: Size of the cache to hold nontransactional statements for the binary log during a
transaction

Binlog_stmt_cache_use

No No Yes

No Global No

DESCRIPTION: Number of statements that used the temporary binary log statement cache

Com_show_binlog_events

No No Yes

No Both No

DESCRIPTION: Count of SHOW BINLOG EVENTS statements

Com_show_binlogs

No No Yes

No Both No

DESCRIPTION: Count of SHOW BINLOGS statements

log-bin-use-v1-row-events

Yes Yes No

Yes Global No

DESCRIPTION: Use version 1 binary log row events

log_bin_use_v1_row_events

Yes Yes No

Yes Global No

DESCRIPTION: Shows whether server is using version 1 binary log row events

max-binlog-dump-events

Yes No No

Yes No

DESCRIPTION: Option used by mysql-test for debugging and testing of replication

max_binlog_cache_size

Yes Yes No

Yes Global Yes

DESCRIPTION: Can be used to restrict the total size used to cache a multi-statement transaction

max_binlog_size

Yes Yes No

Yes Global Yes

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Binlog_stmt_cache_use
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Com_xxx
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Com_xxx

Replication Master Options and Variables

35

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

DESCRIPTION: Binary log will be rotated automatically when size exceeds this value

max_binlog_stmt_cache_size

Yes Yes No

Yes Global Yes

DESCRIPTION: Can be used to restrict the total size used to cache all nontransactional statements
during a transaction

sporadic-binlog-dump-fail

Yes No No

Yes No

DESCRIPTION: Option used by mysql-test for debugging and testing of replication

Section 2.3.4, “Binary Log Options and Variables”, provides more detailed information about options and
variables relating to binary logging. For additional general information about the binary log, see The Binary
Log.

For information about the sql_log_bin and sql_log_off variables, see Server System Variables.

For a table showing all command-line options, system and status variables used with mysqld, see Server
Option and Variable Reference.

2.3.2 Replication Master Options and Variables

This section describes the server options and system variables that you can use on replication master
servers. You can specify the options either on the command line or in an option file. You can specify
system variable values using SET.

On the master and each slave, you must use the server-id option to establish a unique replication ID.
For each server, you should pick a unique positive integer in the range from 1 to 232 − 1, and each ID must
be different from every other ID in use by any other replication master or slave. Example: server-id=3.

For options used on the master for controlling binary logging, see Section 2.3.4, “Binary Log Options and
Variables”.

System Variables Used on Replication Masters

The following system variables are used in controlling replication masters:

• auto_increment_increment

Name auto_increment_increment

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values

Default 1

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/binary-log.html
http://dev.mysql.com/doc/refman/5.5/en/binary-log.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_sql_log_bin
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_sql_log_off
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html
http://dev.mysql.com/doc/refman/5.5/en/mysqld-option-tables.html
http://dev.mysql.com/doc/refman/5.5/en/mysqld-option-tables.html
http://dev.mysql.com/doc/refman/5.5/en/command-line-options.html
http://dev.mysql.com/doc/refman/5.5/en/option-files.html
http://dev.mysql.com/doc/refman/5.5/en/set-variable.html
http://dev.mysql.com/doc/refman/5.5/en/replication-options-master.html#sysvar_auto_increment_increment

Replication Master Options and Variables

36

Min
Value

1

Max
Value

65535

auto_increment_increment and auto_increment_offset are intended for use with master-
to-master replication, and can be used to control the operation of AUTO_INCREMENT columns. Both
variables have global and session values, and each can assume an integer value between 1 and
65,535 inclusive. Setting the value of either of these two variables to 0 causes its value to be set
to 1 instead. Attempting to set the value of either of these two variables to an integer greater than
65,535 or less than 0 causes its value to be set to 65,535 instead. Attempting to set the value of
auto_increment_increment or auto_increment_offset to a noninteger value gives rise to an
error, and the actual value of the variable remains unchanged.

Note

auto_increment_increment is also supported for use with NDB tables.

These two variables affect AUTO_INCREMENT column behavior as follows:

• auto_increment_increment controls the interval between successive column values. For
example:

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 1 |
| auto_increment_offset | 1 |
+--------------------------+-------+
2 rows in set (0.00 sec)

mysql> CREATE TABLE autoinc1
 -> (col INT NOT NULL AUTO_INCREMENT PRIMARY KEY);
 Query OK, 0 rows affected (0.04 sec)

mysql> SET @@auto_increment_increment=10;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 10 |
| auto_increment_offset | 1 |
+--------------------------+-------+
2 rows in set (0.01 sec)

mysql> INSERT INTO autoinc1 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT col FROM autoinc1;
+-----+
| col |
+-----+
| 1 |
| 11 |
| 21 |
| 31 |
+-----+

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster.html

Replication Master Options and Variables

37

4 rows in set (0.00 sec)

• auto_increment_offset determines the starting point for the AUTO_INCREMENT column value.
Consider the following, assuming that these statements are executed during the same session as the
example given in the description for auto_increment_increment:

mysql> SET @@auto_increment_offset=5;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 10 |
| auto_increment_offset | 5 |
+--------------------------+-------+
2 rows in set (0.00 sec)

mysql> CREATE TABLE autoinc2
 -> (col INT NOT NULL AUTO_INCREMENT PRIMARY KEY);
Query OK, 0 rows affected (0.06 sec)

mysql> INSERT INTO autoinc2 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT col FROM autoinc2;
+-----+
| col |
+-----+
| 5 |
| 15 |
| 25 |
| 35 |
+-----+
4 rows in set (0.02 sec)

If the value of auto_increment_offset is greater than that of auto_increment_increment, the
value of auto_increment_offset is ignored.

Should one or both of these variables be changed and then new rows inserted into a table containing
an AUTO_INCREMENT column, the results may seem counterintuitive because the series of
AUTO_INCREMENT values is calculated without regard to any values already present in the column, and
the next value inserted is the least value in the series that is greater than the maximum existing value in
the AUTO_INCREMENT column. In other words, the series is calculated like so:

auto_increment_offset + N × auto_increment_increment

where N is a positive integer value in the series [1, 2, 3, ...]. For example:

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 10 |
| auto_increment_offset | 5 |
+--------------------------+-------+
2 rows in set (0.00 sec)

mysql> SELECT col FROM autoinc1;
+-----+
| col |

www.EngineeringBooksPdf.com

Replication Master Options and Variables

38

+-----+
| 1 |
| 11 |
| 21 |
| 31 |
+-----+
4 rows in set (0.00 sec)

mysql> INSERT INTO autoinc1 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT col FROM autoinc1;
+-----+
| col |
+-----+
| 1 |
| 11 |
| 21 |
| 31 |
| 35 |
| 45 |
| 55 |
| 65 |
+-----+
8 rows in set (0.00 sec)

The values shown for auto_increment_increment and auto_increment_offset generate the
series 5 + N × 10, that is, [5, 15, 25, 35, 45, ...]. The greatest value present in the col column prior to the
INSERT is 31, and the next available value in the AUTO_INCREMENT series is 35, so the inserted values
for col begin at that point and the results are as shown for the SELECT query.

It is not possible to confine the effects of these two variables to a single table, and thus they do not take
the place of the sequences offered by some other database management systems; these variables
control the behavior of all AUTO_INCREMENT columns in all tables on the MySQL server. If the global
value of either variable is set, its effects persist until the global value is changed or overridden by
setting the session value, or until mysqld is restarted. If the local value is set, the new value affects
AUTO_INCREMENT columns for all tables into which new rows are inserted by the current user for the
duration of the session, unless the values are changed during that session.

The default value of auto_increment_increment is 1. See Section 4.1.1, “Replication and
AUTO_INCREMENT”.

• auto_increment_offset

Name auto_increment_offset

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 1

Min
Value

1

Permitted Values

Max
Value

65535

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/replication-options-master.html#sysvar_auto_increment_offset

Replication Slave Options and Variables

39

This variable has a default value of 1. For particulars, see the description for
auto_increment_increment.

Note

auto_increment_offset is also supported for use with NDB tables.

2.3.3 Replication Slave Options and Variables

Startup Options for Replication Slaves

Obsolete Replication Slave Options

System Variables Used on Replication Slaves

This section describes the server options and system variables that apply to slave replication servers. You
can specify the options either on the command line or in an option file. Many of the options can be set
while the server is running by using the CHANGE MASTER TO statement. You can specify system variable
values using SET.

Server ID. On the master and each slave, you must use the server-id option to establish a unique
replication ID in the range from 1 to 232 − 1. “Unique” means that each ID must be different from every
other ID in use by any other replication master or slave. Example my.cnf file:

[mysqld]
server-id=3

Startup Options for Replication Slaves

The following list describes startup options for controlling replication slave servers. Many of these options
can be set while the server is running by using the CHANGE MASTER TO statement. Others, such as
the --replicate-* options, can be set only when the slave server starts. Replication-related system
variables are discussed later in this section.

• --abort-slave-event-count

Command-Line Format --abort-slave-event-count=#

Type integer

Default 0

Permitted Values

Min
Value

0

When this option is set to some positive integer value other than 0 (the default) it affects replication
behavior as follows: After the slave SQL thread has started, value log events are permitted to be
executed; after that, the slave SQL thread does not receive any more events, just as if the network
connection from the master were cut. The slave thread continues to run, and the output from SHOW
SLAVE STATUS displays Yes in both the Slave_IO_Running and the Slave_SQL_Running columns,
but no further events are read from the relay log.

This option is used internally by the MySQL test suite for replication testing and debugging. It is not
intended for use in a production setting.

• --disconnect-slave-event-count

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.5/en/command-line-options.html
http://dev.mysql.com/doc/refman/5.5/en/option-files.html
http://dev.mysql.com/doc/refman/5.5/en/change-master-to.html
http://dev.mysql.com/doc/refman/5.5/en/set-variable.html
http://dev.mysql.com/doc/refman/5.5/en/change-master-to.html
http://dev.mysql.com/doc/refman/5.5/en/show-slave-status.html
http://dev.mysql.com/doc/refman/5.5/en/show-slave-status.html

Replication Slave Options and Variables

40

Command-Line Format --disconnect-slave-event-count=#

Type integerPermitted Values

Default 0

This option is used internally by the MySQL test suite for replication testing and debugging.

• --log-slave-updates

Command-Line Format --log-slave-updates

Name log_slave_updates

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default OFF

Normally, a slave does not log to its own binary log any updates that are received from a master server.
This option tells the slave to log the updates performed by its SQL thread to its own binary log. For this
option to have any effect, the slave must also be started with the --log-bin option to enable binary
logging. Prior to MySQL 5.5, the server would not start when using the --log-slave-updates option
without also starting the server with the --log-bin option, and would fail with an error; in MySQL 5.5,
only a warning is generated. (Bug #44663) --log-slave-updates is used when you want to chain
replication servers. For example, you might want to set up replication servers using this arrangement:

A -> B -> C

Here, A serves as the master for the slave B, and B serves as the master for the slave C. For this to
work, B must be both a master and a slave. You must start both A and B with --log-bin to enable
binary logging, and B with the --log-slave-updates option so that updates received from A are
logged by B to its binary log.

• --log-slow-slave-statements

Command-Line Format --log-slow-slave-statements

Type booleanPermitted Values

Default OFF

When the slow query log is enabled, this option enables logging for queries that have taken more than
long_query_time seconds to execute on the slave.

• --log-warnings[=level]

Command-Line Format --log-warnings[=#]

Name log_warningsSystem Variable

Variable
Scope

Global, Session

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/replication-options-binary-log.html#sysvar_log_slave_updates
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_long_query_time
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_log-warnings
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_log_warnings

Replication Slave Options and Variables

41

Dynamic
Variable

Yes

Type integer

Default 1

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 1

Min
Value

0

Permitted Values (64-bit
platforms, <= 5.5.2)

Max
Value

18446744073709547520

Type integer

Default 1

Min
Value

0

Permitted Values (64-bit
platforms, >= 5.5.3)

Max
Value

18446744073709551615

This option causes a server to print more messages to the error log about what it is doing. With
respect to replication, the server generates warnings that it succeeded in reconnecting after a network/
connection failure, and informs you as to how each slave thread started. This option is enabled (1)
by default; to disable it, use --log-warnings=0. If the value is greater than 1, aborted connections
are written to the error log, and access-denied errors for new connection attempts are written. See
Communication Errors and Aborted Connections.

Note that the effects of this option are not limited to replication. It produces warnings across a spectrum
of server activities.

• --master-info-file=file_name

Command-Line Format --master-info-file=file_name

Type file namePermitted Values

Default master.info

The name to use for the file in which the slave records information about the master. The default name
is master.info in the data directory. For information about the format of this file, see Section 5.2.2,
“Slave Status Logs”.

• --master-retry-count=count

Command-Line Format --master-retry-count=#

Type integer

Default 86400

Permitted Values (32-bit
platforms)

Min
Value

0

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_log-warnings
http://dev.mysql.com/doc/refman/5.5/en/communication-errors.html

Replication Slave Options and Variables

42

Max
Value

4294967295

Type integer

Default 86400

Min
Value

0

Permitted Values (64-bit
platforms)

Max
Value

18446744073709551615

The number of times that the slave tries to connect to the master before giving up. Reconnects are
attempted at intervals set by the MASTER_CONNECT_RETRY option of the CHANGE MASTER TO
statement (default 60). Reconnects are triggered when data reads by the slave time out according to
the --slave-net-timeout option. The default value is 86400. A value of 0 means “infinite”; the slave
attempts to connect forever.

• slave-max-allowed-packet=bytes

Introduced 5.5.26

Command-Line Format --slave-max-allowed-packet=#

Type integer

Default 1073741824

Min
Value

1024

Permitted Values

Max
Value

1073741824

In MySQL 5.5.26 and later, this option sets the maximum packet size in bytes for the slave SQL and I/
O threads, so that large updates using row-based replication do not cause replication to fail because an
update exceeded max_allowed_packet. (Bug #12400221, Bug #60926)

The corresponding server variable slave_max_allowed_packet always has a value that is a positive
integer multiple of 1024; if you set it to some value that is not such a multiple, the value is automatically
rounded down to the next highest multiple of 1024. (For example, if you start the server with --slave-
max-allowed-packet=10000, the value used is 9216; setting 0 as the value causes 1024 to be
used.) A truncation warning is issued in such cases.

The maximum (and default) value is 1073741824 (1 GB); the minimum is 1024.

• --max-relay-log-size=size

Command-Line Format --max-relay-log-size=#

Name max_relay_log_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values

Default 0

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/change-master-to.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_allowed_packet
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_relay_log_size

Replication Slave Options and Variables

43

Min
Value

0

Max
Value

1073741824

The size at which the server rotates relay log files automatically. If this value is nonzero, the relay log is
rotated automatically when its size exceeds this value. If this value is zero (the default), the size at which
relay log rotation occurs is determined by the value of max_binlog_size. For more information, see
Section 5.2.1, “The Slave Relay Log”.

• --relay-log=file_name

Command-Line Format --relay-log=file_name

Name relay_log

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

The base name for the relay log. The default base name is host_name-relay-bin. The server writes
the file in the data directory unless the base name is given with a leading absolute path name to specify
a different directory. The server creates relay log files in sequence by adding a numeric suffix to the base
name.

Due to the manner in which MySQL parses server options, if you specify this option, you must supply a
value; the default base name is used only if the option is not actually specified. If you use the --relay-
log option without specifying a value, unexpected behavior is likely to result; this behavior depends
on the other options used, the order in which they are specified, and whether they are specified on the
command line or in an option file. For more information about how MySQL handles server options, see
Specifying Program Options.

If you specify this option, the value specified is also used as the base name for the relay log index file.
You can override this behavior by specifying a different relay log index file base name using the --
relay-log-index option.

Starting with MySQL 5.5.20, when the server reads an entry from the index file, it checks whether the
entry contains a relative path. If it does, the relative part of the path in replaced with the absolute path
set using the --relay-log option. An absolute path remains unchanged; in such a case, the index
must be edited manually to enable the new path or paths to be used. Prior to MySQL 5.5.20, manual
intervention was required whenever relocating the binary log or relay log files. (Bug #11745230, Bug
#12133)

You may find the --relay-log option useful in performing the following tasks:

• Creating relay logs whose names are independent of host names.

• If you need to put the relay logs in some area other than the data directory because your relay logs
tend to be very large and you do not want to decrease max_relay_log_size.

• To increase speed by using load-balancing between disks.

• --relay-log-index=file_name

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/replication-options-slave.html#sysvar_relay_log
http://dev.mysql.com/doc/refman/5.5/en/program-options.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_relay_log_size

Replication Slave Options and Variables

44

Command-Line Format --relay-log-index=file_name

Name relay_log_index

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

The name to use for the relay log index file. The default name is host_name-relay-bin.index in the
data directory, where host_name is the name of the slave server.

Due to the manner in which MySQL parses server options, if you specify this option, you must supply
a value; the default base name is used only if the option is not actually specified. If you use the --
relay-log-index option without specifying a value, unexpected behavior is likely to result; this
behavior depends on the other options used, the order in which they are specified, and whether they
are specified on the command line or in an option file. For more information about how MySQL handles
server options, see Specifying Program Options.

If you specify this option, the value specified is also used as the base name for the relay logs. You can
override this behavior by specifying a different relay log file base name using the --relay-log option.

• --relay-log-info-file=file_name

Command-Line Format --relay-log-info-file=file_name

Type file namePermitted Values

Default relay-log.info

The name to use for the file in which the slave records information about the relay logs. The default
name is relay-log.info in the data directory. For information about the format of this file, see
Section 5.2.2, “Slave Status Logs”.

• --relay-log-purge={0|1}

Command-Line Format --relay-log-purge

Name relay_log_purge

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default TRUE

Disable or enable automatic purging of relay logs as soon as they are no longer needed. The default
value is 1 (enabled). This is a global variable that can be changed dynamically with SET GLOBAL
relay_log_purge = N.

• --relay-log-recovery={0|1}

Command-Line Format --relay-log-recovery

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/replication-options-slave.html#sysvar_relay_log_index
http://dev.mysql.com/doc/refman/5.5/en/program-options.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_relay_log_purge

Replication Slave Options and Variables

45

Type booleanPermitted Values

Default FALSE

Enables automatic relay log recovery immediately following server startup, which means that the
replication slave discards all unprocessed relay logs and retrieves them from the replication master. This
should be used following a crash on the replication slave to ensure that no possibly corrupted relay logs
are processed. The default value is 0 (disabled).

• --relay-log-space-limit=size

Command-Line Format --relay-log-space-limit=#

Name relay_log_space_limit

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 0

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 0

Min
Value

0

Permitted Values (64-bit
platforms, <= 5.5.2)

Max
Value

18446744073709547520

Type integer

Default 0

Min
Value

0

Permitted Values (64-bit
platforms, >= 5.5.3)

Max
Value

18446744073709551615

This option places an upper limit on the total size in bytes of all relay logs on the slave. A value of 0
means “no limit.” This is useful for a slave server host that has limited disk space. When the limit is
reached, the I/O thread stops reading binary log events from the master server until the SQL thread
has caught up and deleted some unused relay logs. Note that this limit is not absolute: There are cases
where the SQL thread needs more events before it can delete relay logs. In that case, the I/O thread
exceeds the limit until it becomes possible for the SQL thread to delete some relay logs because not
doing so would cause a deadlock. You should not set --relay-log-space-limit to less than twice
the value of --max-relay-log-size (or --max-binlog-size if --max-relay-log-size is 0).
In that case, there is a chance that the I/O thread waits for free space because --relay-log-space-
limit is exceeded, but the SQL thread has no relay log to purge and is unable to satisfy the I/O thread.
This forces the I/O thread to ignore --relay-log-space-limit temporarily.

• --replicate-do-db=db_name

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_relay_log_space_limit

Replication Slave Options and Variables

46

Command-Line Format --replicate-do-db=name

Permitted Values Type string

The effects of this option depend on whether statement-based or row-based replication is in use.

Statement-based replication. Tell the slave SQL thread to restrict replication to statements where
the default database (that is, the one selected by USE) is db_name. To specify more than one database,
use this option multiple times, once for each database; however, doing so does not replicate cross-
database statements such as UPDATE some_db.some_table SET foo='bar' while a different
database (or no database) is selected.

Warning

To specify multiple databases you must use multiple instances of this option.
Because database names can contain commas, if you supply a comma
separated list then the list will be treated as the name of a single database.

An example of what does not work as you might expect when using statement-based replication: If
the slave is started with --replicate-do-db=sales and you issue the following statements on the
master, the UPDATE statement is not replicated:

USE prices;
UPDATE sales.january SET amount=amount+1000;

The main reason for this “check just the default database” behavior is that it is difficult from the statement
alone to know whether it should be replicated (for example, if you are using multiple-table DELETE
statements or multiple-table UPDATE statements that act across multiple databases). It is also faster to
check only the default database rather than all databases if there is no need.

Row-based replication. Tells the slave SQL thread to restrict replication to database db_name. Only
tables belonging to db_name are changed; the current database has no effect on this. Suppose that the
slave is started with --replicate-do-db=sales and row-based replication is in effect, and then the
following statements are run on the master:

USE prices;
UPDATE sales.february SET amount=amount+100;

The february table in the sales database on the slave is changed in accordance with the UPDATE
statement; this occurs whether or not the USE statement was issued. However, issuing the following
statements on the master has no effect on the slave when using row-based replication and --
replicate-do-db=sales:

USE prices;
UPDATE prices.march SET amount=amount-25;

Even if the statement USE prices were changed to USE sales, the UPDATE statement's effects would
still not be replicated.

Another important difference in how --replicate-do-db is handled in statement-based replication
as opposed to row-based replication occurs with regard to statements that refer to multiple databases.
Suppose that the slave is started with --replicate-do-db=db1, and the following statements are
executed on the master:

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/use.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/delete.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/use.html
http://dev.mysql.com/doc/refman/5.5/en/update.html

Replication Slave Options and Variables

47

USE db1;
UPDATE db1.table1 SET col1 = 10, db2.table2 SET col2 = 20;

If you are using statement-based replication, then both tables are updated on the slave. However,
when using row-based replication, only table1 is affected on the slave; since table2 is in a different
database, table2 on the slave is not changed by the UPDATE. Now suppose that, instead of the USE
db1 statement, a USE db4 statement had been used:

USE db4;
UPDATE db1.table1 SET col1 = 10, db2.table2 SET col2 = 20;

In this case, the UPDATE statement would have no effect on the slave when using statement-based
replication. However, if you are using row-based replication, the UPDATE would change table1 on the
slave, but not table2—in other words, only tables in the database named by --replicate-do-db
are changed, and the choice of default database has no effect on this behavior.

If you need cross-database updates to work, use --replicate-wild-do-table=db_name.%
instead. See Section 5.3, “How Servers Evaluate Replication Filtering Rules”.

Note

This option affects replication in the same manner that --binlog-do-db affects
binary logging, and the effects of the replication format on how --replicate-
do-db affects replication behavior are the same as those of the logging format on
the behavior of --binlog-do-db.

This option has no effect on BEGIN, COMMIT, or ROLLBACK statements.

• --replicate-ignore-db=db_name

Command-Line Format --replicate-ignore-db=name

Permitted Values Type string

As with --replicate-do-db, the effects of this option depend on whether statement-based or row-
based replication is in use.

Statement-based replication. Tells the slave SQL thread not to replicate any statement where the
default database (that is, the one selected by USE) is db_name.

Row-based replication. Tells the slave SQL thread not to update any tables in the database
db_name. The default database has no effect.

When using statement-based replication, the following example does not work as you might expect.
Suppose that the slave is started with --replicate-ignore-db=sales and you issue the following
statements on the master:

USE prices;
UPDATE sales.january SET amount=amount+1000;

The UPDATE statement is replicated in such a case because --replicate-ignore-db applies
only to the default database (determined by the USE statement). Because the sales database was
specified explicitly in the statement, the statement has not been filtered. However, when using row-
based replication, the UPDATE statement's effects are not propagated to the slave, and the slave's

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/commit.html
http://dev.mysql.com/doc/refman/5.5/en/commit.html
http://dev.mysql.com/doc/refman/5.5/en/commit.html
http://dev.mysql.com/doc/refman/5.5/en/use.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/use.html
http://dev.mysql.com/doc/refman/5.5/en/update.html

Replication Slave Options and Variables

48

copy of the sales.january table is unchanged; in this instance, --replicate-ignore-db=sales
causes all changes made to tables in the master's copy of the sales database to be ignored by the
slave.

To specify more than one database to ignore, use this option multiple times, once for each database.
Because database names can contain commas, if you supply a comma separated list then the list will be
treated as the name of a single database.

You should not use this option if you are using cross-database updates and you do not want these
updates to be replicated. See Section 5.3, “How Servers Evaluate Replication Filtering Rules”.

If you need cross-database updates to work, use --replicate-wild-ignore-table=db_name.%
instead. See Section 5.3, “How Servers Evaluate Replication Filtering Rules”.

Note

This option affects replication in the same manner that --binlog-ignore-
db affects binary logging, and the effects of the replication format on how --
replicate-ignore-db affects replication behavior are the same as those of
the logging format on the behavior of --binlog-ignore-db.

This option has no effect on BEGIN, COMMIT, or ROLLBACK statements.

• --replicate-do-table=db_name.tbl_name

Command-Line Format --replicate-do-table=name

Permitted Values Type string

Tells the slave SQL thread to restrict replication to the specified table. To specify more than one table,
use this option multiple times, once for each table. This works for both cross-database updates and
default database updates, in contrast to --replicate-do-db. See Section 5.3, “How Servers Evaluate
Replication Filtering Rules”.

This option affects only statements that apply to tables. It does not affect statements that apply only to
other database objects, such as stored routines. To filter statements operating on stored routines, use
one or more of the --replicate-*-db options.

• --replicate-ignore-table=db_name.tbl_name

Command-Line Format --replicate-ignore-table=name

Permitted Values Type string

Tells the slave SQL thread not to replicate any statement that updates the specified table, even if any
other tables might be updated by the same statement. To specify more than one table to ignore, use
this option multiple times, once for each table. This works for cross-database updates, in contrast to --
replicate-ignore-db. See Section 5.3, “How Servers Evaluate Replication Filtering Rules”.

This option affects only statements that apply to tables. It does not affect statements that apply only to
other database objects, such as stored routines. To filter statements operating on stored routines, use
one or more of the --replicate-*-db options.

• --replicate-rewrite-db=from_name->to_name

Command-Line Format --replicate-rewrite-db=old_name->new_name

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/commit.html
http://dev.mysql.com/doc/refman/5.5/en/commit.html
http://dev.mysql.com/doc/refman/5.5/en/commit.html

Replication Slave Options and Variables

49

Permitted Values Type string

Tells the slave to translate the default database (that is, the one selected by USE) to to_name if it was
from_name on the master. Only statements involving tables are affected (not statements such as
CREATE DATABASE, DROP DATABASE, and ALTER DATABASE), and only if from_name is the default
database on the master. To specify multiple rewrites, use this option multiple times. The server uses the
first one with a from_name value that matches. The database name translation is done before the --
replicate-* rules are tested.

Statements in which table names are qualified with database names when using this option do not
work with table-level replication filtering options such as --replicate-do-table. Suppose we have
a database named a on the master, one named b on the slave, each containing a table t, and have
started the master with --replicate-rewrite-db='a->b'. At a later point in time, we execute
DELETE FROM a.t. In this case, no relevant filtering rule works, for the reasons shown here:

1. --replicate-do-table=a.t does not work because the slave has table t in database b.

2. --replicate-do-table=b.t does not match the original statement and so is ignored.

3. --replicate-do-table=*.t is handled identically to --replicate-do-table=a.t, and thus
does not work, either.

Similarly, the --replication-rewrite-db option does not work with cross-database updates.

If you use this option on the command line and the > character is special to your command interpreter,
quote the option value. For example:

shell> mysqld --replicate-rewrite-db="olddb->newdb"

• --replicate-same-server-id

Command-Line Format --replicate-same-server-id

Type booleanPermitted Values

Default FALSE

To be used on slave servers. Usually you should use the default setting of 0, to prevent infinite loops
caused by circular replication. If set to 1, the slave does not skip events having its own server ID.
Normally, this is useful only in rare configurations. Cannot be set to 1 if --log-slave-updates is
used. By default, the slave I/O thread does not write binary log events to the relay log if they have the
slave's server ID (this optimization helps save disk usage). If you want to use --replicate-same-
server-id, be sure to start the slave with this option before you make the slave read its own events
that you want the slave SQL thread to execute.

• --replicate-wild-do-table=db_name.tbl_name

Command-Line Format --replicate-wild-do-table=name

Permitted Values Type string

Tells the slave thread to restrict replication to statements where any of the updated tables match the
specified database and table name patterns. Patterns can contain the % and _ wildcard characters,
which have the same meaning as for the LIKE pattern-matching operator. To specify more than one
table, use this option multiple times, once for each table. This works for cross-database updates. See
Section 5.3, “How Servers Evaluate Replication Filtering Rules”.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/use.html
http://dev.mysql.com/doc/refman/5.5/en/create-database.html
http://dev.mysql.com/doc/refman/5.5/en/drop-database.html
http://dev.mysql.com/doc/refman/5.5/en/alter-database.html
http://dev.mysql.com/doc/refman/5.5/en/delete.html
http://dev.mysql.com/doc/refman/5.5/en/string-comparison-functions.html#operator_like

Replication Slave Options and Variables

50

This option applies to tables, views, and triggers. It does not apply to stored procedures and functions, or
events. To filter statements operating on the latter objects, use one or more of the --replicate-*-db
options.

Example: --replicate-wild-do-table=foo%.bar% replicates only updates that use a table where
the database name starts with foo and the table name starts with bar.

If the table name pattern is %, it matches any table name and the option also applies to database-level
statements (CREATE DATABASE, DROP DATABASE, and ALTER DATABASE). For example, if you use
--replicate-wild-do-table=foo%.%, database-level statements are replicated if the database
name matches the pattern foo%.

To include literal wildcard characters in the database or table name patterns, escape them with a
backslash. For example, to replicate all tables of a database that is named my_own%db, but not replicate
tables from the my1ownAABCdb database, you should escape the _ and % characters like this: --
replicate-wild-do-table=my_own\%db. If you use the option on the command line, you might
need to double the backslashes or quote the option value, depending on your command interpreter. For
example, with the bash shell, you would need to type --replicate-wild-do-table=my_own\\
%db.

• --replicate-wild-ignore-table=db_name.tbl_name

Command-Line Format --replicate-wild-ignore-table=name

Permitted Values Type string

Tells the slave thread not to replicate a statement where any table matches the given wildcard pattern.
To specify more than one table to ignore, use this option multiple times, once for each table. This works
for cross-database updates. See Section 5.3, “How Servers Evaluate Replication Filtering Rules”.

Example: --replicate-wild-ignore-table=foo%.bar% does not replicate updates that use a
table where the database name starts with foo and the table name starts with bar.

For information about how matching works, see the description of the --replicate-wild-do-table
option. The rules for including literal wildcard characters in the option value are the same as for --
replicate-wild-ignore-table as well.

• --report-host=host_name

Command-Line Format --report-host=host_name

Name report_host

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type string

The host name or IP address of the slave to be reported to the master during slave registration. This
value appears in the output of SHOW SLAVE HOSTS on the master server. Leave the value unset if
you do not want the slave to register itself with the master. Note that it is not sufficient for the master to
simply read the IP address of the slave from the TCP/IP socket after the slave connects. Due to NAT
and other routing issues, that IP may not be valid for connecting to the slave from the master or other
hosts.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/create-database.html
http://dev.mysql.com/doc/refman/5.5/en/drop-database.html
http://dev.mysql.com/doc/refman/5.5/en/alter-database.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_report_host
http://dev.mysql.com/doc/refman/5.5/en/show-slave-hosts.html

Replication Slave Options and Variables

51

• --report-password=password

Command-Line Format --report-password=name

Name report_password

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type string

The account password of the slave to be reported to the master during slave registration. This value
appears in the output of SHOW SLAVE HOSTS on the master server if the --show-slave-auth-info
option is given.

Although the name of this option might imply otherwise, --report-password is not connected to the
MySQL user privilege system and so is not necessarily (or even likely to be) the same as the password
for the MySQL replication user account.

• --report-port=slave_port_num

Command-Line Format --report-port=#

Name report_port

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 3306

Min
Value

0

Permitted Values (<=
5.5.22)

Max
Value

65535

Type integer

Default 0

Min
Value

0

Permitted Values (>=
5.5.23)

Max
Value

65535

The TCP/IP port number for connecting to the slave, to be reported to the master during slave
registration. Set this only if the slave is listening on a nondefault port or if you have a special tunnel from
the master or other clients to the slave. If you are not sure, do not use this option.

Prior to MySQL 5.5.23, the default value for this option was 3306. In MySQL 5.5.23 and later, the value
shown is the port number actually used by the slave (Bug #13333431). This change also affects the
default value displayed by SHOW SLAVE HOSTS.

• --report-user=user_name

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_report_password
http://dev.mysql.com/doc/refman/5.5/en/show-slave-hosts.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_report_port
http://dev.mysql.com/doc/refman/5.5/en/show-slave-hosts.html

Replication Slave Options and Variables

52

Command-Line Format --report-user=name

Name report_user

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type string

The account user name of the slave to be reported to the master during slave registration. This value
appears in the output of SHOW SLAVE HOSTS on the master server if the --show-slave-auth-info
option is given.

Although the name of this option might imply otherwise, --report-user is not connected to the
MySQL user privilege system and so is not necessarily (or even likely to be) the same as the name of
the MySQL replication user account.

• --show-slave-auth-info

Command-Line Format --show-slave-auth-info

Type booleanPermitted Values

Default FALSE

Display slave user names and passwords in the output of SHOW SLAVE HOSTS on the master server for
slaves started with the --report-user and --report-password options.

• --skip-slave-start

Command-Line Format --skip-slave-start

Type booleanPermitted Values

Default FALSE

Tells the slave server not to start the slave threads when the server starts. To start the threads later, use
a START SLAVE statement.

• --slave_compressed_protocol={0|1}

Command-Line Format --slave-compressed-protocol

Name slave_compressed_protocol

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

If this option is set to 1, use compression for the slave/master protocol if both the slave and the master
support it. The default is 0 (no compression).

• --slave-load-tmpdir=dir_name

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_report_user
http://dev.mysql.com/doc/refman/5.5/en/show-slave-hosts.html
http://dev.mysql.com/doc/refman/5.5/en/show-slave-hosts.html
http://dev.mysql.com/doc/refman/5.5/en/start-slave.html
http://dev.mysql.com/doc/refman/5.5/en/replication-options-slave.html#sysvar_slave_compressed_protocol

Replication Slave Options and Variables

53

Command-Line Format --slave-load-tmpdir=dir_name

Name slave_load_tmpdir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type directory namePermitted Values

Default /tmp

The name of the directory where the slave creates temporary files. This option is by default equal to the
value of the tmpdir system variable. When the slave SQL thread replicates a LOAD DATA INFILE
statement, it extracts the file to be loaded from the relay log into temporary files, and then loads these
into the table. If the file loaded on the master is huge, the temporary files on the slave are huge, too.
Therefore, it might be advisable to use this option to tell the slave to put temporary files in a directory
located in some file system that has a lot of available space. In that case, the relay logs are huge as well,
so you might also want to use the --relay-log option to place the relay logs in that file system.

The directory specified by this option should be located in a disk-based file system (not a memory-based
file system) because the temporary files used to replicate LOAD DATA INFILE must survive machine
restarts. The directory also should not be one that is cleared by the operating system during the system
startup process.

• --slave-net-timeout=seconds

Command-Line Format --slave-net-timeout=#

Name slave_net_timeout

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 3600

Permitted Values

Min
Value

1

The number of seconds to wait for more data from the master before the slave considers the connection
broken, aborts the read, and tries to reconnect. The first retry occurs immediately after the timeout. The
interval between retries is controlled by the MASTER_CONNECT_RETRY option for the CHANGE MASTER
TO statement, and the number of reconnection attempts is limited by the --master-retry-count
option. The default is 3600 seconds (one hour).

• --slave-skip-errors=[err_code1,err_code2,...|all]

(MySQL NDB Cluster 7.2.6 and later:) --slave-skip-errors=[err_code1,err_code2,...|
all|ddl_exist_errors]

Command-Line Format --slave-skip-errors=name

System Variable Name slave_skip_errors

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/replication-options-slave.html#sysvar_slave_load_tmpdir
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_tmpdir
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/replication-options-slave.html#sysvar_slave_net_timeout
http://dev.mysql.com/doc/refman/5.5/en/change-master-to.html
http://dev.mysql.com/doc/refman/5.5/en/change-master-to.html
http://dev.mysql.com/doc/refman/5.5/en/replication-options-slave.html#sysvar_slave_skip_errors

Replication Slave Options and Variables

54

Variable
Scope

Global

Dynamic
Variable

No

Type string

Default OFF

OFF

[list of error codes]

all

Permitted Values

Valid
Values

ddl_exist_errors

Type string

Default OFF

OFF

[list of error codes]

all

Permitted Values

Valid
Values

ddl_exist_errors

Type string

Default OFF

OFF

[list of error codes]

Permitted Values (>=
5.5.15-ndb-7.2.1, <=
5.5.20-ndb-7.2.5)

Valid
Values

all

Type string

Default OFF

OFF

[list of error codes]

all

Permitted Values (>=
5.5.22-ndb-7.2.6)

Valid
Values

ddl_exist_errors

Normally, replication stops when an error occurs on the slave. This gives you the opportunity to resolve
the inconsistency in the data manually. This option tells the slave SQL thread to continue replication
when a statement returns any of the errors listed in the option value.

Do not use this option unless you fully understand why you are getting errors. If there are no bugs in
your replication setup and client programs, and no bugs in MySQL itself, an error that stops replication
should never occur. Indiscriminate use of this option results in slaves becoming hopelessly out of
synchrony with the master, with you having no idea why this has occurred.

For error codes, you should use the numbers provided by the error message in your slave error log and
in the output of SHOW SLAVE STATUS. Errors, Error Codes, and Common Problems, lists server error
codes.

You can also (but should not) use the very nonrecommended value of all to cause the slave to ignore
all error messages and keeps going regardless of what happens. Needless to say, if you use all, there
are no guarantees regarding the integrity of your data. Please do not complain (or file bug reports) in this
case if the slave's data is not anywhere close to what it is on the master. You have been warned.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/show-slave-status.html
http://dev.mysql.com/doc/refman/5.5/en/error-handling.html

Replication Slave Options and Variables

55

MySQL NDB Cluster 7.2.6 and later support an additional shorthand value ddl_exist_errors
for use with the enhanced failover mechanism which is implemented beginning
with that version of NDB Cluster. This value is equivalent to the error code list
1007,1008,1050,1051,1054,1060,1061,1068,1094,1146. This value is not supported by the
mysqld binary included with the MySQL Server 5.5 distribution. (Bug #11762277, Bug #54854) For
more information, see Implementing Failover with NDB Cluster Replication.

Examples:

--slave-skip-errors=1062,1053
--slave-skip-errors=all
--slave-skip-errors=ddl_exist_errors

Obsolete Replication Slave Options

The following options are removed in MySQL 5.5. If you attempt to start mysqld with any of these options
in MySQL 5.5, the server aborts with an unknown variable error. To set the replication parameters
formerly associated with these options, you must use the CHANGE MASTER TO ... statement (see
CHANGE MASTER TO Syntax).

The options affected are shown in this list:

• --master-host

• --master-user

• --master-password

• --master-port

• --master-connect-retry

• --master-ssl

• --master-ssl-ca

• --master-ssl-capath

• --master-ssl-cert

• --master-ssl-cipher

• --master-ssl-key

System Variables Used on Replication Slaves

The following list describes system variables for controlling replication slave servers. They can be set
at server startup and some of them can be changed at runtime using SET. Server options used with
replication slaves are listed earlier in this section.

• init_slave

Command-Line Format --init-slave=name

Name init_slaveSystem Variable

Variable
Scope

Global

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster-replication-failover.html
http://dev.mysql.com/doc/refman/5.5/en/change-master-to.html
http://dev.mysql.com/doc/refman/5.5/en/set-variable.html
http://dev.mysql.com/doc/refman/5.5/en/replication-options-slave.html#sysvar_init_slave

Replication Slave Options and Variables

56

Dynamic
Variable

Yes

Permitted Values Type string

This variable is similar to init_connect, but is a string to be executed by a slave server each time the
SQL thread starts. The format of the string is the same as for the init_connect variable.

Note

The SQL thread sends an acknowledgment to the client before it executes
init_slave. Therefore, it is not guaranteed that init_slave has been
executed when START SLAVE returns. See START SLAVE Syntax, for more
information.

• relay_log

Command-Line Format --relay-log=file_name

Name relay_log

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

The name of the relay log file.

• relay_log_index

Command-Line Format --relay-log-index

Name relay_log_index

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type file namePermitted Values

Default *host_name*-relay-bin.index

The name of the relay log index file. The default name is host_name-relay-bin.index in the data
directory, where host_name is the name of the slave server.

• relay_log_info_file

Command-Line Format --relay-log-info-file=file_name

Name relay_log_info_file

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_init_connect
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_init_connect
http://dev.mysql.com/doc/refman/5.5/en/start-slave.html
http://dev.mysql.com/doc/refman/5.5/en/start-slave.html
http://dev.mysql.com/doc/refman/5.5/en/replication-options-slave.html#sysvar_relay_log
http://dev.mysql.com/doc/refman/5.5/en/replication-options-slave.html#sysvar_relay_log_index
http://dev.mysql.com/doc/refman/5.5/en/replication-options-slave.html#sysvar_relay_log_info_file

Replication Slave Options and Variables

57

Default relay-log.info

The name of the file in which the slave records information about the relay logs. The default name is
relay-log.info in the data directory.

• relay_log_recovery

Command-Line Format --relay-log-recovery

Name relay_log_recovery

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default FALSE

Enables automatic relay log recovery immediately following server startup, which means that the
replication slave discards all unprocessed relay logs and retrieves them from the replication master. This
should be used following a crash on the replication slave to ensure that no possibly corrupted relay logs
are processed. The default value is 0 (disabled). This global variable can be changed dynamically, or by
starting the slave with the --relay-log-recovery option.

• rpl_recovery_rank

This variable is unused, and is removed in MySQL 5.6.

• slave_compressed_protocol

Command-Line Format --slave-compressed-protocol

Name slave_compressed_protocol

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Whether to use compression of the slave/master protocol if both the slave and the master support it.

• slave_exec_mode

Command-Line Format --slave-exec-mode=mode

Name slave_exec_mode

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type enumerationPermitted Values

Default STRICT (ALL)

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/replication-options-slave.html#sysvar_relay_log_recovery
http://dev.mysql.com/doc/refman/5.5/en/replication-options-slave.html#sysvar_slave_compressed_protocol
http://dev.mysql.com/doc/refman/5.5/en/replication-options-slave.html#sysvar_slave_exec_mode

Replication Slave Options and Variables

58

Default IDEMPOTENT (NDB)

IDEMPOTENTValid
Values STRICT

Controls how a slave thread resolves conflicts and errors during replication. IDEMPOTENT mode causes
suppression of duplicate-key and no-key-found errors. This mode should be employed in multi-master
replication, circular replication, and some other special replication scenarios. STRICT mode is the
default, and is suitable for most other cases.

This mode is needed for multi-master replication, circular replication, and some other special replication
scenarios for NDB Cluster Replication. (See NDB Cluster Replication: Multi-Master and Circular
Replication, and NDB Cluster Replication Conflict Resolution, for more information.) The mysqld
supplied with NDB Cluster ignores any value explicitly set for slave_exec_mode, and always treats it
as IDEMPOTENT.

In MySQL Server 5.5, STRICT mode is the default value. This should not be changed; currently,
IDEMPOTENT mode is supported only by NDB.

• slave_load_tmpdir

Command-Line Format --slave-load-tmpdir=dir_name

Name slave_load_tmpdir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type directory namePermitted Values

Default /tmp

The name of the directory where the slave creates temporary files for replicating LOAD DATA INFILE
statements.

• slave_max_allowed_packet

Introduced 5.5.26

Name slave_max_allowed_packet

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 1073741824

Min
Value

1024

Permitted Values

Max
Value

1073741824

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster-replication-multi-master.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster-replication-multi-master.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster-replication-conflict-resolution.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.5/en/replication-options-slave.html#sysvar_slave_load_tmpdir
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/replication-options-slave.html#sysvar_slave_max_allowed_packet

Replication Slave Options and Variables

59

In MySQL 5.5.26 and later, this variable sets the maximum packet size for the slave SQL and I/O
threads, so that large updates using row-based replication do not cause replication to fail because an
update exceeded max_allowed_packet.

This global variable always has a value that is a positive integer multiple of 1024; if you set it to some
value that is not, the value is rounded down to the next highest multiple of 1024 for it is stored or used;
setting slave_max_allowed_packet to 0 causes 1024 to be used. (A truncation warning is issued in
all such cases.) The default and maximum value is 1073741824 (1 GB); the minimum is 1024.

slave_max_allowed_packet can also be set at startup, using the --slave-max-allowed-packet
option.

• slave_net_timeout

Command-Line Format --slave-net-timeout=#

Name slave_net_timeout

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 3600

Permitted Values

Min
Value

1

The number of seconds to wait for more data from a master/slave connection before aborting the read.

• slave_skip_errors

Command-Line Format --slave-skip-errors=name

Name slave_skip_errors

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type string

Default OFF

OFF

[list of error codes]

all

Permitted Values

Valid
Values

ddl_exist_errors

Type string

Default OFF

OFF

[list of error codes]

Permitted Values

Valid
Values

all

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_allowed_packet
http://dev.mysql.com/doc/refman/5.5/en/replication-options-slave.html#sysvar_slave_net_timeout
http://dev.mysql.com/doc/refman/5.5/en/replication-options-slave.html#sysvar_slave_skip_errors

Replication Slave Options and Variables

60

ddl_exist_errors

Type string

Default OFF

OFF

[list of error codes]

Permitted Values (>=
5.5.15-ndb-7.2.1, <=
5.5.20-ndb-7.2.5)

Valid
Values

all

Type string

Default OFF

OFF

[list of error codes]

all

Permitted Values (>=
5.5.22-ndb-7.2.6)

Valid
Values

ddl_exist_errors

Normally, replication stops when an error occurs on the slave. This gives you the opportunity to resolve
the inconsistency in the data manually. This variable tells the slave SQL thread to continue replication
when a statement returns any of the errors listed in the variable value.

• slave_transaction_retries

Command-Line Format --slave-transaction-retries=#

Name slave_transaction_retries

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 10

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 10

Min
Value

0

Permitted Values (64-bit
platforms, <= 5.5.2)

Max
Value

18446744073709547520

Type integer

Default 10

Min
Value

0

Permitted Values (64-bit
platforms, >= 5.5.3)

Max
Value

18446744073709551615

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/replication-options-slave.html#sysvar_slave_transaction_retries

Replication Slave Options and Variables

61

If a replication slave SQL thread fails to execute a transaction because of an InnoDB deadlock or
because the transaction's execution time exceeded InnoDB's innodb_lock_wait_timeout or
NDBCLUSTER's TransactionDeadlockDetectionTimeout or TransactionInactiveTimeout, it
automatically retries slave_transaction_retries times before stopping with an error. The default
value is 10.

• slave_type_conversions

Introduced 5.5.3

Command-Line Format --slave-type-conversions=set

Name slave_type_conversions

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type set

Default

ALL_LOSSY

Permitted Values

Valid
Values ALL_NON_LOSSY

Controls the type conversion mode in effect on the slave when using row-based replication, including
NDB Cluster Replication. Its value is a comma-delimited set of zero or more elements from the list:
ALL_LOSSY, ALL_NON_LOSSY. Set this variable to an empty string to disallow type conversions
between the master and the slave. Changes require a restart of the slave to take effect.

For additional information on type conversion modes applicable to attribute promotion and demotion in
row-based replication, see Row-based replication: attribute promotion and demotion.

This variable was added in MySQL 5.5.3.

• sql_slave_skip_counter

Name sql_slave_skip_counter

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Permitted Values Type integer

The number of events from the master that a slave server should skip.

Important

If skipping the number of events specified by setting this variable would cause the
slave to begin in the middle of an event group, the slave continues to skip until it
finds the beginning of the next event group and begins from that point. For more
information, see SET GLOBAL sql_slave_skip_counter Syntax.

• sync_master_info

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/innodb-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-parameters.html#sysvar_innodb_lock_wait_timeout
http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-transactiondeadlockdetectiontimeout
http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-transactioninactivetimeout
http://dev.mysql.com/doc/refman/5.5/en/replication-options-slave.html#sysvar_slave_type_conversions
http://dev.mysql.com/doc/refman/5.5/en/replication-options-slave.html#sysvar_sql_slave_skip_counter
http://dev.mysql.com/doc/refman/5.5/en/set-global-sql-slave-skip-counter.html

Replication Slave Options and Variables

62

Command-Line Format --sync-master-info=#

Name sync_master_info

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 0

Min
Value

0

Permitted Values (64-bit
platforms, <= 5.5.2)

Max
Value

18446744073709547520

Type integer

Default 0

Min
Value

0

Permitted Values (64-bit
platforms, >= 5.5.3)

Max
Value

18446744073709551615

If the value of this variable is greater than 0, a replication slave synchronizes its master.info
file to disk (using fdatasync()) after every sync_master_info events. The default value is 0
(recommended in most situations), which does not force any synchronization to disk by the MySQL
server; in this case, the server relies on the operating system to flush the master.info file's contents
from time to time as for any other file.

• sync_relay_log

Command-Line Format --sync-relay-log=#

Name sync_relay_log

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Permitted Values (32-bit
platforms)

Min
Value

0

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/replication-options-slave.html#sysvar_sync_master_info
http://dev.mysql.com/doc/refman/5.5/en/replication-options-slave.html#sysvar_sync_relay_log

Replication Slave Options and Variables

63

Max
Value

4294967295

Type integer

Default 0

Min
Value

0

Permitted Values (64-bit
platforms, <= 5.5.2)

Max
Value

18446744073709547520

Type integer

Default 0

Min
Value

0

Permitted Values (64-bit
platforms, >= 5.5.3)

Max
Value

18446744073709551615

If the value of this variable is greater than 0, the MySQL server synchronizes its relay log to disk (using
fdatasync()) after every sync_relay_log events are written to the relay log.

The default value of sync_relay_log is 0, which does no synchronizing to disk; in this case, the server
relies on the operating system to flush the relay log's contents from time to time as for any other file.

A value of 1 is the safest choice because in the event of a crash you lose at most one event from the
relay log. However, it is also the slowest choice (unless the disk has a battery-backed cache, which
makes synchronization very fast).

• sync_relay_log_info

Command-Line Format --sync-relay-log-info=#

Name sync_relay_log_info

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 0

Min
Value

0

Permitted Values (64-bit
platforms, <= 5.5.2)

Max
Value

18446744073709547520

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/replication-options-slave.html#sysvar_sync_relay_log_info

Binary Log Options and Variables

64

Type integer

Default 0

Min
Value

0

Permitted Values (64-bit
platforms, >= 5.5.3)

Max
Value

18446744073709551615

If the value of this variable is greater than 0, a replication slave synchronizes its relay-log.info file
to disk (using fdatasync()) after every sync_relay_log_info transactions. A value of 1 is the
generally the best choice. The default value of sync_relay_log_info is 0, which does not force any
synchronization to disk by the MySQL server—in this case, the server relies on the operating system to
flush the relay-log.info file's contents from time to time as for any other file.

2.3.4 Binary Log Options and Variables

Startup Options Used with Binary Logging

System Variables Used with Binary Logging

You can use the mysqld options and system variables that are described in this section to affect the
operation of the binary log as well as to control which statements are written to the binary log. For
additional information about the binary log, see The Binary Log. For additional information about using
MySQL server options and system variables, see Server Command Options, and Server System Variables.

Startup Options Used with Binary Logging

The following list describes startup options for enabling and configuring the binary log. System variables
used with binary logging are discussed later in this section.

• --binlog-row-event-max-size=N

Command-Line Format --binlog-row-event-max-size=#

Type integer

Default 1024

Min
Value

256

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 1024

Min
Value

256

Permitted Values (64-bit
platforms, <= 5.5.2)

Max
Value

18446744073709547520

Type integer

Default 1024

Permitted Values (64-bit
platforms, >= 5.5.3)

Min
Value

256

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/binary-log.html
http://dev.mysql.com/doc/refman/5.5/en/server-options.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html

Binary Log Options and Variables

65

Max
Value

18446744073709551615

Specify the maximum size of a row-based binary log event, in bytes. Rows are grouped into events
smaller than this size if possible. The value should be a multiple of 256. The default is 1024. See
Section 2.2, “Replication Formats”.

• --log-bin[=base_name]

Command-Line Format --log-bin

Name log_bin

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

Enable binary logging. The server logs all statements that change data to the binary log, which is used
for backup and replication. See The Binary Log.

The option value, if given, is the base name for the log sequence. The server creates binary log files in
sequence by adding a numeric suffix to the base name. It is recommended that you specify a base name
(see Known Issues in MySQL, for the reason). Otherwise, MySQL uses host_name-bin as the base
name.

In MySQL 5.5.20 and later, when the server reads an entry from the index file, it checks whether the
entry contains a relative path, and if it does, the relative part of the path is replaced with the absolute
path set using the --log-bin option. An absolute path remains unchanged; in such a case, the index
must be edited manually to enable the new path or paths to be used. Previous to MySQL 5.5.20, manual
intervention was required whenever relocating the binary log or relay log files. (Bug #11745230, Bug
#12133)

Setting this option causes the log_bin system variable to be set to ON (or 1), and not to the base name.
This is a known issue; see Bug #19614 for more information.

• --log-bin-index[=file_name]

Command-Line Format --log-bin-index=file_name

Permitted Values Type file name

The index file for binary log file names. See The Binary Log. If you omit the file name, and if you did not
specify one with --log-bin, MySQL uses host_name-bin.index as the file name.

• --log-bin-trust-function-creators[={0|1}]

Command-Line Format --log-bin-trust-function-creators

Name log_bin_trust_function_creators

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/replication-options-binary-log.html#sysvar_log_bin
http://dev.mysql.com/doc/refman/5.5/en/binary-log.html
http://dev.mysql.com/doc/refman/5.5/en/bugs.html
http://dev.mysql.com/doc/refman/5.5/en/binary-log.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_log_bin_trust_function_creators

Binary Log Options and Variables

66

Type booleanPermitted Values

Default FALSE

This option sets the corresponding log_bin_trust_function_creators system variable. If no
argument is given, the option sets the variable to 1. log_bin_trust_function_creators affects
how MySQL enforces restrictions on stored function and trigger creation. See Binary Logging of Stored
Programs.

• --log-bin-use-v1-row-events[={0|1}]

Introduced 5.5.15-ndb-7.2.1

Command-Line Format --log-bin-use-v1-row-events[={0|1}]

Name log_bin_use_v1_row_events

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values (>=
5.5.15-ndb-7.2.1) Default 0

Version 2 binary log row events are used by default beginning with MySQL NDB Cluster 7.2.1; however,
Version 2 events cannot be read by previous NDB Cluster releases. Setting --log-bin-use-v1-row-
events to 1 causes mysqld to write the binary log using Version 1 logging events, which is the only
version of binary log events used in previous releases, and thus produce binary logs that can be read by
older slaves.

The value used for this option can be obtained from the read-only log_bin_use_v1_row_events
system variable.

--log-bin-use-v1-row-events is chiefly of interest when setting up replication conflict detection
and resolution using NDB$EPOCH_TRANS() as the conflict detection function, which requires Version 2
binary log row events. Thus, this option and --ndb-log-transaction-id are not compatible.

Note

Version 2 binary log row events are also available in MySQL NDB Cluster
7.0.27 and MySQL NDB Cluster 7.1.6 and later MySQL NDB Cluster 7.0 and
7.1 releases. However, prior to MySQL NDB Cluster 7.2.1, Version 1 events are
the default (and so the default value for this option is 1 in those versions). You
should keep this mind when planning upgrades for setups using NDB Cluster
Replication.

--log-bin-use-v1-row-events is not supported in mainline MySQL Server 5.5 releases.

For more information, see NDB Cluster Replication Conflict Resolution.

Statement selection options. The options in the following list affect which statements are written to
the binary log, and thus sent by a replication master server to its slaves. There are also options for slave
servers that control which statements received from the master should be executed or ignored. For details,
see Section 2.3.3, “Replication Slave Options and Variables”.

• --binlog-do-db=db_name

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_log_bin_trust_function_creators
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_log_bin_trust_function_creators
http://dev.mysql.com/doc/refman/5.5/en/stored-programs-logging.html
http://dev.mysql.com/doc/refman/5.5/en/stored-programs-logging.html
http://dev.mysql.com/doc/refman/5.5/en/replication-options-binary-log.html#sysvar_log_bin_use_v1_row_events
http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster-options-variables.html#option_mysqld_ndb-log-transaction-id
http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster-replication-conflict-resolution.html

Binary Log Options and Variables

67

Command-Line Format --binlog-do-db=name

Permitted Values Type string

This option affects binary logging in a manner similar to the way that --replicate-do-db affects
replication.

The effects of this option depend on whether the statement-based or row-based logging format is in
use, in the same way that the effects of --replicate-do-db depend on whether statement-based or
row-based replication is in use. You should keep in mind that the format used to log a given statement
may not necessarily be the same as that indicated by the value of binlog_format. For example, DDL
statements such as CREATE TABLE and ALTER TABLE are always logged as statements, without
regard to the logging format in effect, so the following statement-based rules for --binlog-do-db
always apply in determining whether or not the statement is logged.

Statement-based logging. Only those statements are written to the binary log where the default
database (that is, the one selected by USE) is db_name. To specify more than one database, use this
option multiple times, once for each database; however, doing so does not cause cross-database
statements such as UPDATE some_db.some_table SET foo='bar' to be logged while a different
database (or no database) is selected.

Warning

To specify multiple databases you must use multiple instances of this option.
Because database names can contain commas, the list will be treated as the
name of a single database if you supply a comma-separated list.

An example of what does not work as you might expect when using statement-based logging: If the
server is started with --binlog-do-db=sales and you issue the following statements, the UPDATE
statement is not logged:

USE prices;
UPDATE sales.january SET amount=amount+1000;

The main reason for this “just check the default database” behavior is that it is difficult from the statement
alone to know whether it should be replicated (for example, if you are using multiple-table DELETE
statements or multiple-table UPDATE statements that act across multiple databases). It is also faster to
check only the default database rather than all databases if there is no need.

Another case which may not be self-evident occurs when a given database is replicated even though it
was not specified when setting the option. If the server is started with --binlog-do-db=sales, the
following UPDATE statement is logged even though prices was not included when setting --binlog-
do-db:

USE sales;
UPDATE prices.discounts SET percentage = percentage + 10;

Because sales is the default database when the UPDATE statement is issued, the UPDATE is logged.

Row-based logging. Logging is restricted to database db_name. Only changes to tables belonging
to db_name are logged; the default database has no effect on this. Suppose that the server is started
with --binlog-do-db=sales and row-based logging is in effect, and then the following statements
are executed:

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/create-table.html
http://dev.mysql.com/doc/refman/5.5/en/alter-table.html
http://dev.mysql.com/doc/refman/5.5/en/use.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/delete.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/update.html

Binary Log Options and Variables

68

USE prices;
UPDATE sales.february SET amount=amount+100;

The changes to the february table in the sales database are logged in accordance with the UPDATE
statement; this occurs whether or not the USE statement was issued. However, when using the row-
based logging format and --binlog-do-db=sales, changes made by the following UPDATE are not
logged:

USE prices;
UPDATE prices.march SET amount=amount-25;

Even if the USE prices statement were changed to USE sales, the UPDATE statement's effects would
still not be written to the binary log.

Another important difference in --binlog-do-db handling for statement-based logging as opposed to
the row-based logging occurs with regard to statements that refer to multiple databases. Suppose that
the server is started with --binlog-do-db=db1, and the following statements are executed:

USE db1;
UPDATE db1.table1 SET col1 = 10, db2.table2 SET col2 = 20;

If you are using statement-based logging, the updates to both tables are written to the binary log.
However, when using the row-based format, only the changes to table1 are logged; table2 is in a
different database, so it is not changed by the UPDATE. Now suppose that, instead of the USE db1
statement, a USE db4 statement had been used:

USE db4;
UPDATE db1.table1 SET col1 = 10, db2.table2 SET col2 = 20;

In this case, the UPDATE statement is not written to the binary log when using statement-based logging.
However, when using row-based logging, the change to table1 is logged, but not that to table2—in
other words, only changes to tables in the database named by --binlog-do-db are logged, and the
choice of default database has no effect on this behavior.

• --binlog-ignore-db=db_name

Command-Line Format --binlog-ignore-db=name

Permitted Values Type string

This option affects binary logging in a manner similar to the way that --replicate-ignore-db affects
replication.

The effects of this option depend on whether the statement-based or row-based logging format is in use,
in the same way that the effects of --replicate-ignore-db depend on whether statement-based or
row-based replication is in use. You should keep in mind that the format used to log a given statement
may not necessarily be the same as that indicated by the value of binlog_format. For example, DDL
statements such as CREATE TABLE and ALTER TABLE are always logged as statements, without
regard to the logging format in effect, so the following statement-based rules for --binlog-ignore-db
always apply in determining whether or not the statement is logged.

Statement-based logging. Tells the server to not log any statement where the default database (that
is, the one selected by USE) is db_name.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/use.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/create-table.html
http://dev.mysql.com/doc/refman/5.5/en/alter-table.html
http://dev.mysql.com/doc/refman/5.5/en/use.html

Binary Log Options and Variables

69

Prior to MySQL 5.5.32, this option caused any statements containing fully qualified table names not to be
logged if there was no default database specified (that is, when SELECT DATABASE() returned NULL).
In MySQL 5.5.32 and later, when there is no default database, no --binlog-ignore-db options are
applied, and such statements are always logged. (Bug #11829838, Bug #60188)

Row-based format. Tells the server not to log updates to any tables in the database db_name. The
current database has no effect.

When using statement-based logging, the following example does not work as you might expect.
Suppose that the server is started with --binlog-ignore-db=sales and you issue the following
statements:

USE prices;
UPDATE sales.january SET amount=amount+1000;

The UPDATE statement is logged in such a case because --binlog-ignore-db applies only to the
default database (determined by the USE statement). Because the sales database was specified
explicitly in the statement, the statement has not been filtered. However, when using row-based logging,
the UPDATE statement's effects are not written to the binary log, which means that no changes to the
sales.january table are logged; in this instance, --binlog-ignore-db=sales causes all changes
made to tables in the master's copy of the sales database to be ignored for purposes of binary logging.

To specify more than one database to ignore, use this option multiple times, once for each database.
Because database names can contain commas, the list will be treated as the name of a single database
if you supply a comma-separated list.

You should not use this option if you are using cross-database updates and you do not want these
updates to be logged.

Testing and debugging options. The following binary log options are used in replication testing and
debugging. They are not intended for use in normal operations.

• --max-binlog-dump-events=N

Command-Line Format --max-binlog-dump-events=#

Type integerPermitted Values

Default 0

This option is used internally by the MySQL test suite for replication testing and debugging.

• --sporadic-binlog-dump-fail

Command-Line Format --sporadic-binlog-dump-fail

Type booleanPermitted Values

Default FALSE

This option is used internally by the MySQL test suite for replication testing and debugging.

System Variables Used with Binary Logging

The following list describes system variables for controlling binary logging. They can be set at server
startup and some of them can be changed at runtime using SET. Server options used to control binary

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_database
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/use.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/set-variable.html

Binary Log Options and Variables

70

logging are listed earlier in this section. For information about the sql_log_bin and sql_log_off
variables, see Server System Variables.

• binlog_cache_size

Command-Line Format --binlog-cache-size=#

Name binlog_cache_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 32768

Min
Value

4096

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 32768

Min
Value

4096

Permitted Values (64-bit
platforms, <= 5.5.2)

Max
Value

18446744073709547520

Type integer

Default 32768

Min
Value

4096

Permitted Values (64-bit
platforms, >= 5.5.3)

Max
Value

18446744073709551615

The size of the cache to hold changes to the binary log during a transaction. A binary log cache is
allocated for each client if the server supports any transactional storage engines and if the server has
the binary log enabled (--log-bin option). If you often use large transactions, you can increase this
cache size to get better performance. The Binlog_cache_use and Binlog_cache_disk_use status
variables can be useful for tuning the size of this variable. See The Binary Log.

In MySQL 5.5.3, a separate binary log cache (the binary log statement cache) was introduced for
nontransactional statements and in MySQL 5.5.3 through 5.5.8, this variable sets.the size for both
caches. This means that, in these MySQL versions, the total memory used for these caches is double
the value set for binlog_cache_size.

Beginning with MySQL 5.5.9, binlog_cache_size sets the size for the transaction cache only, and
the size of the statement cache is governed by the binlog_stmt_cache_size system variable.

• binlog_direct_non_transactional_updates

Introduced 5.5.2

Command-Line Format --binlog-direct-non-transactional-updates[=value]

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_sql_log_bin
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_sql_log_off
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html
http://dev.mysql.com/doc/refman/5.5/en/replication-options-binary-log.html#sysvar_binlog_cache_size
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Binlog_cache_use
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Binlog_cache_disk_use
http://dev.mysql.com/doc/refman/5.5/en/binary-log.html

Binary Log Options and Variables

71

Name binlog_direct_non_transactional_updates

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Due to concurrency issues, a slave can become inconsistent when a transaction contains updates
to both transactional and nontransactional tables. MySQL tries to preserve causality among these
statements by writing nontransactional statements to the transaction cache, which is flushed upon
commit. However, problems arise when modifications done to nontransactional tables on behalf of a
transaction become immediately visible to other connections because these changes may not be written
immediately into the binary log.

Beginning with MySQL 5.5.2, the binlog_direct_non_transactional_updates variable
offers one possible workaround to this issue. By default, this variable is disabled. Enabling
binlog_direct_non_transactional_updates causes updates to nontransactional tables to be
written directly to the binary log, rather than to the transaction cache.

binlog_direct_non_transactional_updates works only for statements that are replicated using
the statement-based binary logging format; that is, it works only when the value of binlog_format
is STATEMENT, or when binlog_format is MIXED and a given statement is being replicated using
the statement-based format. This variable has no effect when the binary log format is ROW, or when
binlog_format is set to MIXED and a given statement is replicated using the row-based format.

Important

Before enabling this variable, you must make certain that there are no
dependencies between transactional and nontransactional tables; an example
of such a dependency would be the statement INSERT INTO myisam_table
SELECT * FROM innodb_table. Otherwise, such statements are likely to
cause the slave to diverge from the master.

Beginning with MySQL 5.5.5, this variable has no effect when the binary log format is ROW or MIXED.
(Bug #51291)

• binlog_format

Command-Line Format --binlog-format=format

Name binlog_format

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type enumeration

Default STATEMENT

ROW

STATEMENT

Permitted Values

Valid
Values

MIXED

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/replication-options-binary-log.html#sysvar_binlog_direct_non_transactional_updates
http://dev.mysql.com/doc/refman/5.5/en/replication-options-binary-log.html#sysvar_binlog_format

Binary Log Options and Variables

72

Type enumeration

Default STATEMENT

ROW

STATEMENT

Permitted Values (>=
5.5.15-ndb-7.2.1, <=
5.5.30-ndb-7.2.12)

Valid
Values

MIXED

Type enumeration

Default MIXED

ROW

STATEMENT

Permitted Values (>=
5.5.31-ndb-7.2.13)

Valid
Values

MIXED

This variable sets the binary logging format, and can be any one of STATEMENT, ROW, or MIXED. See
Section 2.2, “Replication Formats”. binlog_format is set by the --binlog-format option at startup,
or by the binlog_format system variable at runtime.

Note

While you can change the logging format at runtime, it is not recommended
that you change it while replication is ongoing. This is due in part to the fact
that slaves do not honor the master's binlog_format setting; a given MySQL
Server can change only its own logging format.

In MySQL 5.5, the default format is STATEMENT.

Exception. In MySQL NDB Cluster 7.2.1 through MySQL NDB Cluster 7.2.12, the default for this
variable is STATEMENT. In MySQL NDB Cluster 7.2.13 and later, when the NDB storage engine is
enabled, the default is MIXED. (Bug #16417224) See also Starting NDB Cluster Replication (Single
Replication Channel), and Using Two Replication Channels for NDB Cluster Replication.

You must have the SUPER privilege to set either the global or session binlog_format value.

The rules governing when changes to this variable take effect and how long the effect lasts are the
same as for other MySQL server system variables. For more information, see SET Syntax for Variable
Assignment.

When MIXED is specified, statement-based replication is used, except for cases where only row-based
replication is guaranteed to lead to proper results. For example, this happens when statements contain
user-defined functions (UDF) or the UUID() function. An exception to this rule is that MIXED always
uses statement-based replication for stored functions and triggers.

There are exceptions when you cannot switch the replication format at runtime:

• From within a stored function or a trigger.

• If the session is currently in row-based replication mode and has open temporary tables.

• Beginning with MySQL 5.5.3, within a transaction. (Bug #47863)

Trying to switch the format in those cases results in an error.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_binlog-format
http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster-replication-starting.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster-replication-starting.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster-replication-two-channels.html
http://dev.mysql.com/doc/refman/5.5/en/privileges-provided.html#priv_super
http://dev.mysql.com/doc/refman/5.5/en/set-variable.html
http://dev.mysql.com/doc/refman/5.5/en/set-variable.html
http://dev.mysql.com/doc/refman/5.5/en/miscellaneous-functions.html#function_uuid

Binary Log Options and Variables

73

Note

 Prior to MySQL NDB Cluster 7.2.1, it was also not possible to change the binary
logging format at runtime when the NDBCLUSTER storage engine was enabled. In
MySQL NDB Cluster 7.2.1 and later, this restriction is removed.

The binary log format affects the behavior of the following server options:

• --replicate-do-db

• --replicate-ignore-db

• --binlog-do-db

• --binlog-ignore-db

These effects are discussed in detail in the descriptions of the individual options.

• binlog_stmt_cache_size

Introduced 5.5.9

Command-Line Format --binlog-stmt-cache-size=#

Name binlog_stmt_cache_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 32768

Min
Value

4096

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 32768

Min
Value

4096

Permitted Values (64-bit
platforms)

Max
Value

18446744073709551615

Beginning with MySQL 5.5.9, this variable determines the size of the cache for the binary log to hold
nontransactional statements issued during a transaction. In MySQL 5.5.3 and later, separate binary log
transaction and statement caches are allocated for each client if the server supports any transactional
storage engines and if the server has the binary log enabled (--log-bin option). If you often use
large nontransactional statements during transactions, you can increase this cache size to get more
performance. The Binlog_stmt_cache_use and Binlog_stmt_cache_disk_use status variables
can be useful for tuning the size of this variable. See The Binary Log.

In MySQL 5.5.3 through 5.5.8, the size for both caches is set using binlog_cache_size. This means
that, in these MySQL versions, the total memory used for these caches is double the value set for

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.5/en/replication-options-binary-log.html#sysvar_binlog_stmt_cache_size
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Binlog_stmt_cache_use
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Binlog_stmt_cache_disk_use
http://dev.mysql.com/doc/refman/5.5/en/binary-log.html

Binary Log Options and Variables

74

binlog_cache_size. Beginning with MySQL 5.5.9, binlog_cache_size sets the size for the
transaction cache only.

• log_bin

Name log_bin

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Whether the binary log is enabled. If the --log-bin option is used, then the value of this variable is
ON; otherwise it is OFF. This variable reports only on the status of binary logging (enabled or disabled); it
does not actually report the value to which --log-bin is set.

See The Binary Log.

• log_bin_use_v1_row_events

Introduced 5.5.15-ndb-7.2.1

Command-Line Format --log-bin-use-v1-row-events[={0|1}]

Name log_bin_use_v1_row_events

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values (>=
5.5.15-ndb-7.2.1) Default 0

Shows whether Version 2 binary logging, available beginning with MySQL NDB Cluster 7.2.1, is in use.
A value of 1 shows that the server is writing the binary log using Version 1 logging events (the only
version of binary log events used in previous releases), and thus producing a binary log that can be read
by older slaves. 0 indicates that Version 2 binary log events are in use.

This variable is read-only. To switch between Version 1 and Version 2 binary event binary logging, it is
necessary to restart mysqld with the --log-bin-use-v1-row-events option.

Other than when performing upgrades of NDB Cluster Replication, --log-bin-use-v1-
events is chiefly of interest when setting up replication conflict detection and resolution using NDB
$EPOCH_TRANS(), which requires Version 2 binary row event logging. Thus, this option and --ndb-
log-transaction-id are not compatible.

Note

MySQL NDB Cluster 7.2.1 and later use Version 2 binary log row events by
default (and so the default value for this variable changes to 0 in those versions).
You should keep this mind when planning upgrades for setups using NDB Cluster
Replication.

This variable is not supported in mainline MySQL Server 5.5.

For more information, see NDB Cluster Replication Conflict Resolution.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/replication-options-binary-log.html#sysvar_log_bin
http://dev.mysql.com/doc/refman/5.5/en/binary-log.html
http://dev.mysql.com/doc/refman/5.5/en/replication-options-binary-log.html#sysvar_log_bin_use_v1_row_events
http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster-options-variables.html#option_mysqld_ndb-log-transaction-id
http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster-options-variables.html#option_mysqld_ndb-log-transaction-id
http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster-replication-conflict-resolution.html

Binary Log Options and Variables

75

• log_slave_updates

Command-Line Format --log-slave-updates

Name log_slave_updates

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default FALSE

Whether updates received by a slave server from a master server should be logged to the slave's
own binary log. Binary logging must be enabled on the slave for this variable to have any effect. See
Section 2.3, “Replication and Binary Logging Options and Variables”.

• max_binlog_cache_size

Command-Line Format --max-binlog-cache-size=#

Name max_binlog_cache_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 18446744073709547520

Min
Value

4096

Permitted Values (<=
5.5.2)

Max
Value

18446744073709547520

Type integer

Default 18446744073709551615

Min
Value

4096

Permitted Values (>=
5.5.3)

Max
Value

18446744073709551615

If a transaction requires more than this many bytes of memory, the server generates a Multi-
statement transaction required more than 'max_binlog_cache_size' bytes of
storage error. The minimum value is 4096. The maximum possible value is 16EB (exabytes). The
maximum recommended value is 4GB; this is due to the fact that MySQL currently cannot work with
binary log positions greater than 4GB.

Note

Prior to MySQL 5.5.28, 64-bit Windows platforms truncated the stored value for
this variable to 4G, even when it was set to a greater value (Bug #13961678).

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/replication-options-binary-log.html#sysvar_log_slave_updates
http://dev.mysql.com/doc/refman/5.5/en/replication-options-binary-log.html#sysvar_max_binlog_cache_size

Binary Log Options and Variables

76

In MySQL 5.5.3, a separate binary log cache (the binary log statement cache) was introduced for
nontransactional statements and in MySQL 5.5.3 through 5.5.8, this variable sets.the upper limit for both
caches. This means that, in these MySQL versions, the effective maximum for these caches is double
the value set for max_binlog_cache_size.

Beginning with MySQL 5.5.9, max_binlog_cache_size sets the size for the transaction cache only,
and the upper limit for the statement cache is governed by the max_binlog_stmt_cache_size
system variable.

Also beginning with MySQL 5.5.9, the session visibility of the max_binlog_cache_size system
variable matches that of the binlog_cache_size system variable: In MySQL 5.5.8 and earlier
releases, a change in max_binlog_cache_size took immediate effect; in MySQL 5.5.9 and later, a
change in max_binlog_cache_size takes effect only for new sessions that started after the value is
changed.

• max_binlog_size

Command-Line Format --max-binlog-size=#

Name max_binlog_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 1073741824

Min
Value

4096

Permitted Values

Max
Value

1073741824

If a write to the binary log causes the current log file size to exceed the value of this variable, the server
rotates the binary logs (closes the current file and opens the next one). The minimum value is 4096
bytes. The maximum and default value is 1GB.

A transaction is written in one chunk to the binary log, so it is never split between several binary logs.
Therefore, if you have big transactions, you might see binary log files larger than max_binlog_size.

If max_relay_log_size is 0, the value of max_binlog_size applies to relay logs as well.

• max_binlog_stmt_cache_size

Introduced 5.5.9

Command-Line Format --max-binlog-stmt-cache-size=#

Name max_binlog_stmt_cache_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Permitted Values Type integer

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/replication-options-binary-log.html#sysvar_max_binlog_size
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_relay_log_size
http://dev.mysql.com/doc/refman/5.5/en/replication-options-binary-log.html#sysvar_max_binlog_stmt_cache_size

Binary Log Options and Variables

77

Default 18446744073709547520

Min
Value

4096

Max
Value

18446744073709547520

If nontransactional statements within a transaction require more than this many bytes of memory, the
server generates an error. The minimum value is 4096. The maximum and default values are 4GB on
32-bit platforms and 16EB (exabytes) on 64-bit platforms.

Note

Prior to MySQL 5.5.28, 64-bit Windows platforms truncated the stored value for
this variable to 4G, even when it was set to a greater value (Bug #13961678).

In MySQL 5.5.3, a separate binary log cache (the binary log statement cache) was introduced for
nontransactional statements and in MySQL 5.5.3 through 5.5.8, this variable sets.the upper limit for both
caches. This means that, in these MySQL versions, the effective maximum for these caches is double
the value set for max_binlog_cache_size.

Beginning with MySQL 5.5.9, max_binlog_stmt_cache_size sets the size for the statement
cache only, and the upper limit for the transaction cache is governed exclusively by the
max_binlog_cache_size system variable.

• sync_binlog

Command-Line Format --sync-binlog=#

Name sync_binlog

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 0

Min
Value

0

Permitted Values (64-bit
platforms, <= 5.5.2)

Max
Value

18446744073709547520

Type integer

Default 0

Permitted Values (64-bit
platforms, >= 5.5.3)

Min
Value

0

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/replication-options-binary-log.html#sysvar_sync_binlog

Common Replication Administration Tasks

78

Max
Value

4294967295

If the value of this variable is greater than 0, the MySQL server synchronizes its binary log to disk (using
fdatasync()) after every sync_binlog writes to the binary log. There is one write to the binary log
per statement if autocommit is enabled, and one write per transaction otherwise. The default value of
sync_binlog is 0, which does no synchronizing to disk—in this case, the server relies on the operating
system to flush the binary log's contents from time to time as for any other file. A value of 1 is the safest
choice because in the event of a crash you lose at most one statement or transaction from the binary
log. However, it is also the slowest choice (unless the disk has a battery-backed cache, which makes
synchronization very fast).

2.4 Common Replication Administration Tasks

Once replication has been started it should execute without requiring much regular administration.
Depending on your replication environment, you will want to check the replication status of each slave
periodically, daily, or even more frequently.

2.4.1 Checking Replication Status

The most common task when managing a replication process is to ensure that replication is taking place
and that there have been no errors between the slave and the master. The primary statement for this is
SHOW SLAVE STATUS, which you must execute on each slave:

mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
 Slave_IO_State: Waiting for master to send event
 Master_Host: master1
 Master_User: root
 Master_Port: 3306
 Connect_Retry: 60
 Master_Log_File: mysql-bin.000004
 Read_Master_Log_Pos: 931
 Relay_Log_File: slave1-relay-bin.000056
 Relay_Log_Pos: 950
 Relay_Master_Log_File: mysql-bin.000004
 Slave_IO_Running: Yes
 Slave_SQL_Running: Yes
 Replicate_Do_DB:
 Replicate_Ignore_DB:
 Replicate_Do_Table:
 Replicate_Ignore_Table:
 Replicate_Wild_Do_Table:
 Replicate_Wild_Ignore_Table:
 Last_Errno: 0
 Last_Error:
 Skip_Counter: 0
 Exec_Master_Log_Pos: 931
 Relay_Log_Space: 1365
 Until_Condition: None
 Until_Log_File:
 Until_Log_Pos: 0
 Master_SSL_Allowed: No
 Master_SSL_CA_File:
 Master_SSL_CA_Path:
 Master_SSL_Cert:
 Master_SSL_Cipher:
 Master_SSL_Key:
 Seconds_Behind_Master: 0
Master_SSL_Verify_Server_Cert: No

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/show-slave-status.html

Checking Replication Status

79

 Last_IO_Errno: 0
 Last_IO_Error:
 Last_SQL_Errno: 0
 Last_SQL_Error:
 Replicate_Ignore_Server_Ids: 0

The key fields from the status report to examine are:

• Slave_IO_State: The current status of the slave. See Replication Slave I/O Thread States, and
Replication Slave SQL Thread States, for more information.

• Slave_IO_Running: Whether the I/O thread for reading the master's binary log is running. Normally,
you want this to be Yes unless you have not yet started replication or have explicitly stopped it with STOP
SLAVE.

• Slave_SQL_Running: Whether the SQL thread for executing events in the relay log is running. As with
the I/O thread, this should normally be Yes.

• Last_IO_Error, Last_SQL_Error: The last errors registered by the I/O and SQL threads when
processing the relay log. Ideally these should be blank, indicating no errors.

• Seconds_Behind_Master: The number of seconds that the slave SQL thread is behind processing the
master binary log. A high number (or an increasing one) can indicate that the slave is unable to handle
events from the master in a timely fashion.

A value of 0 for Seconds_Behind_Master can usually be interpreted as meaning that the slave has
caught up with the master, but there are some cases where this is not strictly true. For example, this can
occur if the network connection between master and slave is broken but the slave I/O thread has not yet
noticed this—that is, slave_net_timeout has not yet elapsed.

It is also possible that transient values for Seconds_Behind_Master may not reflect the situation
accurately. When the slave SQL thread has caught up on I/O, Seconds_Behind_Master displays 0;
but when the slave I/O thread is still queuing up a new event, Seconds_Behind_Master may show
a large value until the SQL thread finishes executing the new event. This is especially likely when the
events have old timestamps; in such cases, if you execute SHOW SLAVE STATUS several times in
a relatively short period, you may see this value change back and forth repeatedly between 0 and a
relatively large value.

Several pairs of fields provide information about the progress of the slave in reading events from the
master binary log and processing them in the relay log:

• (Master_Log_file, Read_Master_Log_Pos): Coordinates in the master binary log indicating how far
the slave I/O thread has read events from that log.

• (Relay_Master_Log_File, Exec_Master_Log_Pos): Coordinates in the master binary log indicating
how far the slave SQL thread has executed events received from that log.

• (Relay_Log_File, Relay_Log_Pos): Coordinates in the slave relay log indicating how far the
slave SQL thread has executed the relay log. These correspond to the preceding coordinates, but are
expressed in slave relay log coordinates rather than master binary log coordinates.

On the master, you can check the status of connected slaves using SHOW PROCESSLIST to examine the
list of running processes. Slave connections have Binlog Dump in the Command field:

mysql> SHOW PROCESSLIST \G;
*************************** 4. row ***************************
 Id: 10

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/slave-io-thread-states.html
http://dev.mysql.com/doc/refman/5.5/en/slave-sql-thread-states.html
http://dev.mysql.com/doc/refman/5.5/en/stop-slave.html
http://dev.mysql.com/doc/refman/5.5/en/stop-slave.html
http://dev.mysql.com/doc/refman/5.5/en/show-slave-status.html
http://dev.mysql.com/doc/refman/5.5/en/show-processlist.html

Pausing Replication on the Slave

80

 User: root
 Host: slave1:58371
 db: NULL
Command: Binlog Dump
 Time: 777
 State: Has sent all binlog to slave; waiting for binlog to be updated
 Info: NULL

Because it is the slave that drives the replication process, very little information is available in this report.

For slaves that were started with the --report-host option and are connected to the master, the SHOW
SLAVE HOSTS statement on the master shows basic information about the slaves. The output includes the
ID of the slave server, the value of the --report-host option, the connecting port, and master ID:

mysql> SHOW SLAVE HOSTS;
+-----------+--------+------+-------------------+-----------+
| Server_id | Host | Port | Rpl_recovery_rank | Master_id |
+-----------+--------+------+-------------------+-----------+
| 10 | slave1 | 3306 | 0 | 1 |
+-----------+--------+------+-------------------+-----------+
1 row in set (0.00 sec)

2.4.2 Pausing Replication on the Slave

You can stop and start the replication of statements on the slave using the STOP SLAVE and START
SLAVE statements.

To stop processing of the binary log from the master, use STOP SLAVE:

mysql> STOP SLAVE;

When replication is stopped, the slave I/O thread stops reading events from the master binary log and
writing them to the relay log, and the SQL thread stops reading events from the relay log and executing
them. You can pause the I/O or SQL thread individually by specifying the thread type:

mysql> STOP SLAVE IO_THREAD;
mysql> STOP SLAVE SQL_THREAD;

To start execution again, use the START SLAVE statement:

mysql> START SLAVE;

To start a particular thread, specify the thread type:

mysql> START SLAVE IO_THREAD;
mysql> START SLAVE SQL_THREAD;

For a slave that performs updates only by processing events from the master, stopping only the SQL
thread can be useful if you want to perform a backup or other task. The I/O thread will continue to read
events from the master but they are not executed. This makes it easier for the slave to catch up when you
restart the SQL thread.

Stopping only the I/O thread enables the events in the relay log to be executed by the SQL thread up to
the point where the relay log ends. This can be useful when you want to pause execution to catch up with
events already received from the master, when you want to perform administration on the slave but also
ensure that it has processed all updates to a specific point. This method can also be used to pause event

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/show-slave-hosts.html
http://dev.mysql.com/doc/refman/5.5/en/show-slave-hosts.html
http://dev.mysql.com/doc/refman/5.5/en/stop-slave.html
http://dev.mysql.com/doc/refman/5.5/en/start-slave.html
http://dev.mysql.com/doc/refman/5.5/en/start-slave.html
http://dev.mysql.com/doc/refman/5.5/en/stop-slave.html
http://dev.mysql.com/doc/refman/5.5/en/start-slave.html

Pausing Replication on the Slave

81

receipt on the slave while you conduct administration on the master. Stopping the I/O thread but permitting
the SQL thread to run helps ensure that there is not a massive backlog of events to be executed when
replication is started again.

www.EngineeringBooksPdf.com

82

www.EngineeringBooksPdf.com

83

Chapter 3 Replication Solutions

Table of Contents
3.1 Using Replication for Backups ... 83

3.1.1 Backing Up a Slave Using mysqldump ... 84
3.1.2 Backing Up Raw Data from a Slave ... 85
3.1.3 Backing Up a Master or Slave by Making It Read Only .. 85

3.2 Using Replication with Different Master and Slave Storage Engines .. 87
3.3 Using Replication for Scale-Out ... 88
3.4 Replicating Different Databases to Different Slaves .. 90
3.5 Improving Replication Performance ... 91
3.6 Switching Masters During Failover .. 92
3.7 Setting Up Replication to Use Secure Connections .. 94
3.8 Semisynchronous Replication .. 96

3.8.1 Semisynchronous Replication Administrative Interface ... 97
3.8.2 Semisynchronous Replication Installation and Configuration ... 98
3.8.3 Semisynchronous Replication Monitoring .. 100

Replication can be used in many different environments for a range of purposes. This section provides
general notes and advice on using replication for specific solution types.

For information on using replication in a backup environment, including notes on the setup, backup
procedure, and files to back up, see Section 3.1, “Using Replication for Backups”.

For advice and tips on using different storage engines on the master and slaves, see Section 3.2, “Using
Replication with Different Master and Slave Storage Engines”.

Using replication as a scale-out solution requires some changes in the logic and operation of applications
that use the solution. See Section 3.3, “Using Replication for Scale-Out”.

For performance or data distribution reasons, you may want to replicate different databases to different
replication slaves. See Section 3.4, “Replicating Different Databases to Different Slaves”

As the number of replication slaves increases, the load on the master can increase and lead to reduced
performance (because of the need to replicate the binary log to each slave). For tips on improving your
replication performance, including using a single secondary server as a replication master, see Section 3.5,
“Improving Replication Performance”.

For guidance on switching masters, or converting slaves into masters as part of an emergency failover
solution, see Section 3.6, “Switching Masters During Failover”.

To secure your replication communication, you can encrypt the communication channel. For step-by-step
instructions, see Section 3.7, “Setting Up Replication to Use Secure Connections”.

3.1 Using Replication for Backups

To use replication as a backup solution, replicate data from the master to a slave, and then back up the
data slave. The slave can be paused and shut down without affecting the running operation of the master,
so you can produce an effective snapshot of “live” data that would otherwise require the master to be shut
down.

www.EngineeringBooksPdf.com

Backing Up a Slave Using mysqldump

84

How you back up a database depends on its size and whether you are backing up only the data, or the
data and the replication slave state so that you can rebuild the slave in the event of failure. There are
therefore two choices:

• If you are using replication as a solution to enable you to back up the data on the master, and the size of
your database is not too large, the mysqldump tool may be suitable. See Section 3.1.1, “Backing Up a
Slave Using mysqldump”.

• For larger databases, where mysqldump would be impractical or inefficient, you can back up the raw
data files instead. Using the raw data files option also means that you can back up the binary and relay
logs that will enable you to recreate the slave in the event of a slave failure. For more information, see
Section 3.1.2, “Backing Up Raw Data from a Slave”.

Another backup strategy, which can be used for either master or slave servers, is to put the server in a
read-only state. The backup is performed against the read-only server, which then is changed back to its
usual read/write operational status. See Section 3.1.3, “Backing Up a Master or Slave by Making It Read
Only”.

3.1.1 Backing Up a Slave Using mysqldump

Using mysqldump to create a copy of a database enables you to capture all of the data in the database
in a format that enables the information to be imported into another instance of MySQL Server (see
mysqldump — A Database Backup Program). Because the format of the information is SQL statements,
the file can easily be distributed and applied to running servers in the event that you need access to the
data in an emergency. However, if the size of your data set is very large, mysqldump may be impractical.

When using mysqldump, you should stop replication on the slave before starting the dump process to
ensure that the dump contains a consistent set of data:

1. Stop the slave from processing requests. You can stop replication completely on the slave using
mysqladmin:

shell> mysqladmin stop-slave

Alternatively, you can stop only the slave SQL thread to pause event execution:

shell> mysql -e 'STOP SLAVE SQL_THREAD;'

This enables the slave to continue to receive data change events from the master's binary log and store
them in the relay logs using the I/O thread, but prevents the slave from executing these events and
changing its data. Within busy replication environments, permitting the I/O thread to run during backup
may speed up the catch-up process when you restart the slave SQL thread.

2. Run mysqldump to dump your databases. You may either dump all databases or select databases to
be dumped. For example, to dump all databases:

shell> mysqldump --all-databases > fulldb.dump

3. Once the dump has completed, start slave operations again:

shell> mysqladmin start-slave

In the preceding example, you may want to add login credentials (user name, password) to the commands,
and bundle the process up into a script that you can run automatically each day.

If you use this approach, make sure you monitor the slave replication process to ensure that the time
taken to run the backup does not affect the slave's ability to keep up with events from the master. See

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html

Backing Up Raw Data from a Slave

85

Section 2.4.1, “Checking Replication Status”. If the slave is unable to keep up, you may want to add
another slave and distribute the backup process. For an example of how to configure this scenario, see
Section 3.4, “Replicating Different Databases to Different Slaves”.

3.1.2 Backing Up Raw Data from a Slave

To guarantee the integrity of the files that are copied, backing up the raw data files on your MySQL
replication slave should take place while your slave server is shut down. If the MySQL server is still
running, background tasks may still be updating the database files, particularly those involving storage
engines with background processes such as InnoDB. With InnoDB, these problems should be resolved
during crash recovery, but since the slave server can be shut down during the backup process without
affecting the execution of the master it makes sense to take advantage of this capability.

To shut down the server and back up the files:

1. Shut down the slave MySQL server:

shell> mysqladmin shutdown

2. Copy the data files. You can use any suitable copying or archive utility, including cp, tar or WinZip.
For example, assuming that the data directory is located under the current directory, you can archive
the entire directory as follows:

shell> tar cf /tmp/dbbackup.tar ./data

3. Start the MySQL server again. Under Unix:

shell> mysqld_safe &

Under Windows:

C:\> "C:\Program Files\MySQL\MySQL Server 5.5\bin\mysqld"

Normally you should back up the entire data directory for the slave MySQL server. If you want to be able to
restore the data and operate as a slave (for example, in the event of failure of the slave), then in addition
to the slave's data, you should also back up the slave status files, master.info and relay-log.info,
along with the relay log files. These files are needed to resume replication after you restore the slave's
data.

If you lose the relay logs but still have the relay-log.info file, you can check it to determine how far
the SQL thread has executed in the master binary logs. Then you can use CHANGE MASTER TO with the
MASTER_LOG_FILE and MASTER_LOG_POS options to tell the slave to re-read the binary logs from that
point. This requires that the binary logs still exist on the master server.

If your slave is replicating LOAD DATA INFILE statements, you should also back up any SQL_LOAD-*
files that exist in the directory that the slave uses for this purpose. The slave needs these files to resume
replication of any interrupted LOAD DATA INFILE operations. The location of this directory is the value of
the --slave-load-tmpdir option. If the server was not started with that option, the directory location is
the value of the tmpdir system variable.

3.1.3 Backing Up a Master or Slave by Making It Read Only

It is possible to back up either master or slave servers in a replication setup by acquiring a global read lock
and manipulating the read_only system variable to change the read-only state of the server to be backed
up:

1. Make the server read-only, so that it processes only retrievals and blocks updates.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/change-master-to.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_tmpdir
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_read_only

Backing Up a Master or Slave by Making It Read Only

86

2. Perform the backup.

3. Change the server back to its normal read/write state.

Note

The instructions in this section place the server to be backed up in a state that is
safe for backup methods that get the data from the server, such as mysqldump
(see mysqldump — A Database Backup Program). You should not attempt to use
these instructions to make a binary backup by copying files directly because the
server may still have modified data cached in memory and not flushed to disk.

The following instructions describe how to do this for a master server and for a slave server. For both
scenarios discussed here, suppose that you have the following replication setup:

• A master server M1

• A slave server S1 that has M1 as its master

• A client C1 connected to M1

• A client C2 connected to S1

In either scenario, the statements to acquire the global read lock and manipulate the read_only variable
are performed on the server to be backed up and do not propagate to any slaves of that server.

Scenario 1: Backup with a Read-Only Master

Put the master M1 in a read-only state by executing these statements on it:

mysql> FLUSH TABLES WITH READ LOCK;
mysql> SET GLOBAL read_only = ON;

While M1 is in a read-only state, the following properties are true:

• Requests for updates sent by C1 to M1 will block because the server is in read-only mode.

• Requests for query results sent by C1 to M1 will succeed.

• Making a backup on M1 is safe.

• Making a backup on S1 is not safe. This server is still running, and might be processing the binary log or
update requests coming from client C2

While M1 is read only, perform the backup. For example, you can use mysqldump.

After the backup operation on M1 completes, restore M1 to its normal operational state by executing these
statements:

mysql> SET GLOBAL read_only = OFF;
mysql> UNLOCK TABLES;

Although performing the backup on M1 is safe (as far as the backup is concerned), it is not optimal for
performance because clients of M1 are blocked from executing updates.

This strategy applies to backing up a master server in a replication setup, but can also be used for a single
server in a nonreplication setting.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_read_only

Using Replication with Different Master and Slave Storage Engines

87

Scenario 2: Backup with a Read-Only Slave

Put the slave S1 in a read-only state by executing these statements on it:

mysql> FLUSH TABLES WITH READ LOCK;
mysql> SET GLOBAL read_only = ON;

While S1 is in a read-only state, the following properties are true:

• The master M1 will continue to operate, so making a backup on the master is not safe.

• The slave S1 is stopped, so making a backup on the slave S1 is safe.

These properties provide the basis for a popular backup scenario: Having one slave busy performing a
backup for a while is not a problem because it does not affect the entire network, and the system is still
running during the backup. In particular, clients can still perform updates on the master server, which
remains unaffected by backup activity on the slave.

While S1 is read only, perform the backup. For example, you can use mysqldump.

After the backup operation on S1 completes, restore S1 to its normal operational state by executing these
statements:

mysql> SET GLOBAL read_only = OFF;
mysql> UNLOCK TABLES;

After the slave is restored to normal operation, it again synchronizes to the master by catching up with any
outstanding updates from the binary log of the master.

3.2 Using Replication with Different Master and Slave Storage
Engines

It does not matter for the replication process whether the source table on the master and the
replicated table on the slave use different engine types. In fact, the default_storage_engine and
storage_engine system variables are not replicated.

This provides a number of benefits in the replication process in that you can take advantage of different
engine types for different replication scenarios. For example, in a typical scale-out scenario (see
Section 3.3, “Using Replication for Scale-Out”), you want to use InnoDB tables on the master to take
advantage of the transactional functionality, but use MyISAM on the slaves where transaction support is
not required because the data is only read. When using replication in a data-logging environment you may
want to use the Archive storage engine on the slave.

Configuring different engines on the master and slave depends on how you set up the initial replication
process:

• If you used mysqldump to create the database snapshot on your master, you could edit the dump file
text to change the engine type used on each table.

Another alternative for mysqldump is to disable engine types that you do not want to use on the
slave before using the dump to build the data on the slave. For example, you can add the --skip-
innodb option on your slave to disable the InnoDB engine. If a specific engine does not exist for a
table to be created, MySQL will use the default engine type, usually MyISAM. (This requires that the
NO_ENGINE_SUBSTITUTION SQL mode is not enabled.) If you want to disable additional engines in this

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_default_storage_engine
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_storage_engine
http://dev.mysql.com/doc/refman/5.5/en/innodb-parameters.html#option_mysqld_innodb
http://dev.mysql.com/doc/refman/5.5/en/innodb-parameters.html#option_mysqld_innodb
http://dev.mysql.com/doc/refman/5.5/en/sql-mode.html#sqlmode_no_engine_substitution

Using Replication for Scale-Out

88

way, you may want to consider building a special binary to be used on the slave that only supports the
engines you want.

• If you are using raw data files (a binary backup) to set up the slave, you will be unable to change the
initial table format. Instead, use ALTER TABLE to change the table types after the slave has been
started.

• For new master/slave replication setups where there are currently no tables on the master, avoid
specifying the engine type when creating new tables.

If you are already running a replication solution and want to convert your existing tables to another engine
type, follow these steps:

1. Stop the slave from running replication updates:

mysql> STOP SLAVE;

This will enable you to change engine types without interruptions.

2. Execute an ALTER TABLE ... ENGINE='engine_type' for each table to be changed.

3. Start the slave replication process again:

mysql> START SLAVE;

Although the default_storage_engine variable is not replicated, be aware that CREATE TABLE and
ALTER TABLE statements that include the engine specification will be correctly replicated to the slave. For
example, if you have a CSV table and you execute:

mysql> ALTER TABLE csvtable Engine='MyISAM';

The above statement will be replicated to the slave and the engine type on the slave will be converted
to MyISAM, even if you have previously changed the table type on the slave to an engine other than
CSV. If you want to retain engine differences on the master and slave, you should be careful to use the
default_storage_engine variable on the master when creating a new table. For example, instead of:

mysql> CREATE TABLE tablea (columna int) Engine=MyISAM;

Use this format:

mysql> SET default_storage_engine=MyISAM;
mysql> CREATE TABLE tablea (columna int);

When replicated, the default_storage_engine variable will be ignored, and the CREATE TABLE
statement will execute on the slave using the slave's default engine.

3.3 Using Replication for Scale-Out

You can use replication as a scale-out solution; that is, where you want to split up the load of database
queries across multiple database servers, within some reasonable limitations.

Because replication works from the distribution of one master to one or more slaves, using replication for
scale-out works best in an environment where you have a high number of reads and low number of writes/

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/alter-table.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_default_storage_engine
http://dev.mysql.com/doc/refman/5.5/en/create-table.html
http://dev.mysql.com/doc/refman/5.5/en/alter-table.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_default_storage_engine
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_default_storage_engine
http://dev.mysql.com/doc/refman/5.5/en/create-table.html

Using Replication for Scale-Out

89

updates. Most Web sites fit into this category, where users are browsing the Web site, reading articles,
posts, or viewing products. Updates only occur during session management, or when making a purchase
or adding a comment/message to a forum.

Replication in this situation enables you to distribute the reads over the replication slaves, while still
enabling your web servers to communicate with the replication master when a write is required. You can
see a sample replication layout for this scenario in Figure 3.1, “Using Replication to Improve Performance
During Scale-Out”.

Figure 3.1 Using Replication to Improve Performance During Scale-Out

If the part of your code that is responsible for database access has been properly abstracted/modularized,
converting it to run with a replicated setup should be very smooth and easy. Change the implementation of
your database access to send all writes to the master, and to send reads to either the master or a slave. If
your code does not have this level of abstraction, setting up a replicated system gives you the opportunity
and motivation to clean it up. Start by creating a wrapper library or module that implements the following
functions:

• safe_writer_connect()

• safe_reader_connect()

• safe_reader_statement()

• safe_writer_statement()

safe_ in each function name means that the function takes care of handling all error conditions. You can
use different names for the functions. The important thing is to have a unified interface for connecting for
reads, connecting for writes, doing a read, and doing a write.

Then convert your client code to use the wrapper library. This may be a painful and scary process at
first, but it pays off in the long run. All applications that use the approach just described are able to take
advantage of a master/slave configuration, even one involving multiple slaves. The code is much easier
to maintain, and adding troubleshooting options is trivial. You need modify only one or two functions; for
example, to log how long each statement took, or which statement among those issued gave you an error.

If you have written a lot of code, you may want to automate the conversion task by using the replace
utility that comes with standard MySQL distributions, or write your own conversion script. Ideally, your code

www.EngineeringBooksPdf.com

Replicating Different Databases to Different Slaves

90

uses consistent programming style conventions. If not, then you are probably better off rewriting it anyway,
or at least going through and manually regularizing it to use a consistent style.

3.4 Replicating Different Databases to Different Slaves

There may be situations where you have a single master and want to replicate different databases to
different slaves. For example, you may want to distribute different sales data to different departments
to help spread the load during data analysis. A sample of this layout is shown in Figure 3.2, “Using
Replication to Replicate Databases to Separate Replication Slaves”.

Figure 3.2 Using Replication to Replicate Databases to Separate Replication Slaves

You can achieve this separation by configuring the master and slaves as normal, and then limiting
the binary log statements that each slave processes by using the --replicate-wild-do-table
configuration option on each slave.

Important

You should not use --replicate-do-db for this purpose when using statement-
based replication, since statement-based replication causes this option's affects
to vary according to the database that is currently selected. This applies to mixed-
format replication as well, since this enables some updates to be replicated using
the statement-based format.

However, it should be safe to use --replicate-do-db for this purpose if you are
using row-based replication only, since in this case the currently selected database
has no effect on the option's operation.

For example, to support the separation as shown in Figure 3.2, “Using Replication to Replicate Databases
to Separate Replication Slaves”, you should configure each replication slave as follows, before executing
START SLAVE:

• Replication slave 1 should use --replicate-wild-do-table=databaseA.%.

• Replication slave 2 should use --replicate-wild-do-table=databaseB.%.

• Replication slave 3 should use --replicate-wild-do-table=databaseC.%.

Each slave in this configuration receives the entire binary log from the master, but executes only those
events from the binary log that apply to the databases and tables included by the --replicate-wild-
do-table option in effect on that slave.

If you have data that must be synchronized to the slaves before replication starts, you have a number of
choices:

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/start-slave.html

Improving Replication Performance

91

• Synchronize all the data to each slave, and delete the databases, tables, or both that you do not want to
keep.

• Use mysqldump to create a separate dump file for each database and load the appropriate dump file on
each slave.

• Use a raw data file dump and include only the specific files and databases that you need for each slave.

Note

This does not work with InnoDB databases unless you use
innodb_file_per_table.

3.5 Improving Replication Performance

As the number of slaves connecting to a master increases, the load, although minimal, also increases,
as each slave uses a client connection to the master. Also, as each slave must receive a full copy of the
master binary log, the network load on the master may also increase and create a bottleneck.

If you are using a large number of slaves connected to one master, and that master is also busy
processing requests (for example, as part of a scale-out solution), then you may want to improve the
performance of the replication process.

One way to improve the performance of the replication process is to create a deeper replication structure
that enables the master to replicate to only one slave, and for the remaining slaves to connect to this
primary slave for their individual replication requirements. A sample of this structure is shown in Figure 3.3,
“Using an Additional Replication Host to Improve Performance”.

Figure 3.3 Using an Additional Replication Host to Improve Performance

For this to work, you must configure the MySQL instances as follows:

• Master 1 is the primary master where all changes and updates are written to the database. Binary
logging should be enabled on this machine.

• Master 2 is the slave to the Master 1 that provides the replication functionality to the remainder of
the slaves in the replication structure. Master 2 is the only machine permitted to connect to Master 1.
Master 2 also has binary logging enabled, and the --log-slave-updates option so that replication
instructions from Master 1 are also written to Master 2's binary log so that they can then be replicated to
the true slaves.

• Slave 1, Slave 2, and Slave 3 act as slaves to Master 2, and replicate the information from Master 2,
which actually consists of the upgrades logged on Master 1.

The above solution reduces the client load and the network interface load on the primary master, which
should improve the overall performance of the primary master when used as a direct database solution.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/innodb-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-parameters.html#sysvar_innodb_file_per_table

Switching Masters During Failover

92

If your slaves are having trouble keeping up with the replication process on the master, there are a number
of options available:

• If possible, put the relay logs and the data files on different physical drives. To do this, use the --
relay-log option to specify the location of the relay log.

• If the slaves are significantly slower than the master, you may want to divide up the responsibility for
replicating different databases to different slaves. See Section 3.4, “Replicating Different Databases to
Different Slaves”.

• If your master makes use of transactions and you are not concerned about transaction support on
your slaves, use MyISAM or another nontransactional engine on the slaves. See Section 3.2, “Using
Replication with Different Master and Slave Storage Engines”.

• If your slaves are not acting as masters, and you have a potential solution in place to ensure that you
can bring up a master in the event of failure, then you can switch off --log-slave-updates. This
prevents “dumb” slaves from also logging events they have executed into their own binary log.

3.6 Switching Masters During Failover

There is in MySQL 5.5 no official solution for providing failover between master and slaves in the event of
a failure. Instead, you must set up a master and one or more slaves; then, you need to write an application
or script that monitors the master to check whether it is up, and instructs the slaves and applications to
change master in case of failure. This section discusses some of the issues encountered when setting up
failover in this fashion.

Note

The MySQL Utilities include a mysqlfailover tool that provides failover capability
using GTIDs, support for which requires MySQL 5.6 or later. For more information,
see mysqlfailover — Automatic replication health monitoring and failover, and
Replication with Global Transaction Identifiers.

You can tell a slave to change to a new master using the CHANGE MASTER TO statement. The slave does
not check whether the databases on the master are compatible with those on the slave; it simply begins
reading and executing events from the specified coordinates in the new master's binary log. In a failover
situation, all the servers in the group are typically executing the same events from the same binary log file,
so changing the source of the events should not affect the structure or integrity of the database, provided
that you exercise care in making the change.

Slaves should be run with the --log-bin option and without --log-slave-updates. In this way,
the slave is ready to become a master without restarting the slave mysqld. Assume that you have the
structure shown in Figure 3.4, “Redundancy Using Replication, Initial Structure”.

Remember that you can tell a slave to change its master at any time, using the CHANGE MASTER TO
statement. The slave will not check whether the databases on the master are compatible with the slave, it
will just start reading and executing events from the specified binary log coordinates on the new master.
In a failover situation, all the servers in the group are typically executing the same events from the same
binary log file, so changing the source of the events should not affect the database structure or integrity
providing you are careful.

Run your slaves with the --log-bin option and without --log-slave-updates. In this way, the slave
is ready to become a master as soon as you issue STOP SLAVE; RESET MASTER, and CHANGE MASTER
TO statement on the other slaves. For example, assume that you have the structure shown in Figure 3.4,
“Redundancy Using Replication, Initial Structure”.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/mysql-utilities/1.5/en/mysqlfailover.html
http://dev.mysql.com/doc/refman/5.6/en/replication-gtids.html
http://dev.mysql.com/doc/refman/5.5/en/change-master-to.html
http://dev.mysql.com/doc/refman/5.5/en/change-master-to.html
http://dev.mysql.com/doc/refman/5.5/en/stop-slave.html
http://dev.mysql.com/doc/refman/5.5/en/reset-master.html
http://dev.mysql.com/doc/refman/5.5/en/change-master-to.html
http://dev.mysql.com/doc/refman/5.5/en/change-master-to.html

Switching Masters During Failover

93

Figure 3.4 Redundancy Using Replication, Initial Structure

In this diagram, the MySQL Master holds the master database, the MySQL Slave hosts are replication
slaves, and the Web Client machines are issuing database reads and writes. Web clients that issue
only reads (and would normally be connected to the slaves) are not shown, as they do not need to switch
to a new server in the event of failure. For a more detailed example of a read/write scale-out replication
structure, see Section 3.3, “Using Replication for Scale-Out”.

Each MySQL Slave (Slave 1, Slave 2, and Slave 3) is a slave running with --log-bin and without
--log-slave-updates. Because updates received by a slave from the master are not logged in the
binary log unless --log-slave-updates is specified, the binary log on each slave is empty initially. If
for some reason MySQL Master becomes unavailable, you can pick one of the slaves to become the new
master. For example, if you pick Slave 1, all Web Clients should be redirected to Slave 1, which
writes the updates to its binary log. Slave 2 and Slave 3 should then replicate from Slave 1.

The reason for running the slave without --log-slave-updates is to prevent slaves from receiving
updates twice in case you cause one of the slaves to become the new master. If Slave 1 has --log-
slave-updates enabled, it writes any updates that it receives from Master in its own binary log. This
means that, when Slave 2 changes from Master to Slave 1 as its master, it may receive updates from
Slave 1 that it has already received from Master.

Make sure that all slaves have processed any statements in their relay log. On each slave, issue STOP
SLAVE IO_THREAD, then check the output of SHOW PROCESSLIST until you see Has read all relay
log. When this is true for all slaves, they can be reconfigured to the new setup. On the slave Slave 1
being promoted to become the master, issue STOP SLAVE and RESET MASTER.

On the other slaves Slave 2 and Slave 3, use STOP SLAVE and CHANGE MASTER TO
MASTER_HOST='Slave1' (where 'Slave1' represents the real host name of Slave 1). To use CHANGE
MASTER TO, add all information about how to connect to Slave 1 from Slave 2 or Slave 3 (user,
password, port). When issuing the CHANGE MASTER TO statement in this, there is no need to specify
the name of the Slave 1 binary log file or log position to read from, since the first binary log file and
position 4, are the defaults. Finally, execute START SLAVE on Slave 2 and Slave 3.

Once the new replication setup is in place, you need to tell each Web Client to direct its statements to
Slave 1. From that point on, all updates statements sent by Web Client to Slave 1 are written to the
binary log of Slave 1, which then contains every update statement sent to Slave 1 since Master died.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/show-processlist.html
http://dev.mysql.com/doc/refman/5.5/en/stop-slave.html
http://dev.mysql.com/doc/refman/5.5/en/reset-master.html
http://dev.mysql.com/doc/refman/5.5/en/stop-slave.html
http://dev.mysql.com/doc/refman/5.5/en/start-slave.html

Setting Up Replication to Use Secure Connections

94

The resulting server structure is shown in Figure 3.5, “Redundancy Using Replication, After Master
Failure”.

Figure 3.5 Redundancy Using Replication, After Master Failure

When Master becomes available again, you should make it a slave of Slave 1. To do this, issue on
Master the same CHANGE MASTER TO statement as that issued on Slave 2 and Slave 3 previously.
Master then becomes a slave of S1ave 1 and picks up the Web Client writes that it missed while it
was offline.

To make Master a master again, use the preceding procedure as if Slave 1 was unavailable and
Master was to be the new master. During this procedure, do not forget to run RESET MASTER on Master
before making Slave 1, Slave 2, and Slave 3 slaves of Master. If you fail to do this, the slaves may
pick up stale writes from the Web Client applications dating from before the point at which Master
became unavailable.

You should be aware that there is no synchronization between slaves, even when they share the same
master, and thus some slaves might be considerably ahead of others. This means that in some cases the
procedure outlined in the previous example might not work as expected. In practice, however, relay logs on
all slaves should be relatively close together.

One way to keep applications informed about the location of the master is to have a dynamic DNS entry for
the master. With bind you can use nsupdate to update the DNS dynamically.

3.7 Setting Up Replication to Use Secure Connections
To use a secure connection for encrypting the transfer of the binary log required during replication, both
the master and the slave servers must support encrypted network connections. If either server does not
support secure connections (because it has not been compiled or configured for them), replication through
an encrypted connection is not possible.

Setting up secure connections for replication is similar to doing so for client/server connections. You must
obtain (or create) a suitable security certificate that you can use on the master, and a similar certificate
(from the same certificate authority) on each slave. You must also obtain suitable key files.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/change-master-to.html
http://dev.mysql.com/doc/refman/5.5/en/reset-master.html

Setting Up Replication to Use Secure Connections

95

For more information on setting up a server and client for secure connections, see Configuring MySQL to
Use Secure Connections.

To enable secure connections on the master, you must create or obtain suitable certificate and key files,
and then add the following configuration options to the master's configuration within the [mysqld] section
of the master's my.cnf file, changing the file names as necessary:

[mysqld]
ssl-ca=cacert.pem
ssl-cert=server-cert.pem
ssl-key=server-key.pem

The paths to the files may be relative or absolute; we recommend that you always use complete paths for
this purpose.

The options are as follows:

• ssl-ca identifies the Certificate Authority (CA) certificate.

• ssl-cert identifies the server public key certificate. This can be sent to the client and authenticated
against the CA certificate that it has.

• ssl-key identifies the server private key.

On the slave, there are two ways to specify the information required for connecting securely to the master.
You can either name the slave certificate and key files in the [client] section of the slave's my.cnf file,
or you can explicitly specify that information using the CHANGE MASTER TO statement:

• To name the slave certificate and key files using an option file, add the following lines to the [client]
section of the slave's my.cnf file, changing the file names as necessary:

[client]
ssl-ca=cacert.pem
ssl-cert=client-cert.pem
ssl-key=client-key.pem

Restart the slave server, using the --skip-slave-start option to prevent the slave from connecting
to the master. Use CHANGE MASTER TO to specify the master configuration, using the MASTER_SSL
option to connect securely:

mysql> CHANGE MASTER TO
 -> MASTER_HOST='master_hostname',
 -> MASTER_USER='replicate',
 -> MASTER_PASSWORD='password',
 -> MASTER_SSL=1;

• To specify the certificate and key names using the CHANGE MASTER TO statement, append the
appropriate MASTER_SSL_xxx options:

mysql> CHANGE MASTER TO
 -> MASTER_HOST='master_hostname',
 -> MASTER_USER='replicate',
 -> MASTER_PASSWORD='password',
 -> MASTER_SSL=1,
 -> MASTER_SSL_CA = 'ca_file_name',
 -> MASTER_SSL_CAPATH = 'ca_directory_name',
 -> MASTER_SSL_CERT = 'cert_file_name',

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/using-secure-connections.html
http://dev.mysql.com/doc/refman/5.5/en/using-secure-connections.html
http://dev.mysql.com/doc/refman/5.5/en/secure-connection-options.html#option_general_ssl-ca
http://dev.mysql.com/doc/refman/5.5/en/secure-connection-options.html#option_general_ssl-cert
http://dev.mysql.com/doc/refman/5.5/en/secure-connection-options.html#option_general_ssl-key
http://dev.mysql.com/doc/refman/5.5/en/change-master-to.html
http://dev.mysql.com/doc/refman/5.5/en/change-master-to.html
http://dev.mysql.com/doc/refman/5.5/en/change-master-to.html

Semisynchronous Replication

96

 -> MASTER_SSL_KEY = 'key_file_name';

After the master information has been updated, start the slave replication process:

mysql> START SLAVE;

You can use the SHOW SLAVE STATUS statement to confirm that a secure connection was established
successfully.

For more information on the CHANGE MASTER TO statement, see CHANGE MASTER TO Syntax.

If you want to enforce the use of secure connections during replication, then create a user with the
REPLICATION SLAVE privilege and use the REQUIRE SSL option for that user. For example:

mysql> CREATE USER 'repl'@'%.mydomain.com' IDENTIFIED BY 'slavepass';
mysql> GRANT REPLICATION SLAVE ON *.*
 -> TO 'repl'@'%.mydomain.com' REQUIRE SSL;

If the account already exists, you can add REQUIRE SSL to it with this statement:

mysql> GRANT USAGE ON *.*
 -> TO 'repl'@'%.mydomain.com' REQUIRE SSL;

3.8 Semisynchronous Replication

In addition to the built-in asynchronous replication, MySQL 5.5 supports an interface to semisynchronous
replication that is implemented by plugins. This section discusses what semisynchronous replication is and
how it works. The following sections cover the administrative interface to semisynchronous replication and
how to install, configure, and monitor it.

MySQL replication by default is asynchronous. The master writes events to its binary log but does not
know whether or when a slave has retrieved and processed them. With asynchronous replication, if
the master crashes, transactions that it has committed might not have been transmitted to any slave.
Consequently, failover from master to slave in this case may result in failover to a server that is missing
transactions relative to the master.

Semisynchronous replication can be used as an alternative to asynchronous replication:

• A slave indicates whether it is semisynchronous-capable when it connects to the master.

• If semisynchronous replication is enabled on the master side and there is at least one semisynchronous
slave, a thread that performs a transaction commit on the master blocks after the commit is done and
waits until at least one semisynchronous slave acknowledges that it has received all events for the
transaction, or until a timeout occurs.

• The slave acknowledges receipt of a transaction's events only after the events have been written to its
relay log and flushed to disk.

• If a timeout occurs without any slave having acknowledged the transaction, the master reverts to
asynchronous replication. When at least one semisynchronous slave catches up, the master returns to
semisynchronous replication.

• Semisynchronous replication must be enabled on both the master and slave sides. If semisynchronous
replication is disabled on the master, or enabled on the master but on no slaves, the master uses
asynchronous replication.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/show-slave-status.html
http://dev.mysql.com/doc/refman/5.5/en/change-master-to.html
http://dev.mysql.com/doc/refman/5.5/en/change-master-to.html
http://dev.mysql.com/doc/refman/5.5/en/privileges-provided.html#priv_replication-slave

Semisynchronous Replication Administrative Interface

97

While the master is blocking (waiting for acknowledgment from a slave after having performed a commit),
it does not return to the session that performed the transaction. When the block ends, the master returns
to the session, which then can proceed to execute other statements. At this point, the transaction has
committed on the master side, and receipt of its events has been acknowledged by at least one slave.

Blocking also occurs after rollbacks that are written to the binary log, which occurs when a transaction that
modifies nontransactional tables is rolled back. The rolled-back transaction is logged even though it has
no effect for transactional tables because the modifications to the nontransactional tables cannot be rolled
back and must be sent to slaves.

For statements that do not occur in transactional context (that is, when no transaction has been started
with START TRANSACTION or SET autocommit = 0), autocommit is enabled and each statement
commits implicitly. With semisynchronous replication, the master blocks after committing each such
statement, just as it does for explicit transaction commits.

To understand what the “semi” in “semisynchronous replication” means, compare it with asynchronous and
fully synchronous replication:

• With asynchronous replication, the master writes events to its binary log and slaves request them when
they are ready. There is no guarantee that any event will ever reach any slave.

• With fully synchronous replication, when a master commits a transaction, all slaves also will have
committed the transaction before the master returns to the session that performed the transaction. The
drawback of this is that there might be a lot of delay to complete a transaction.

• Semisynchronous replication falls between asynchronous and fully synchronous replication. The master
waits after commit only until at least one slave has received and logged the events. It does not wait
for all slaves to acknowledge receipt, and it requires only receipt, not that the events have been fully
executed and committed on the slave side.

Compared to asynchronous replication, semisynchronous replication provides improved data integrity.
When a commit returns successfully, it is known that the data exists in at least two places (on the
master and at least one slave). If the master commits but a crash occurs while the master is waiting for
acknowledgment from a slave, it is possible that the transaction may not have reached any slave.

Semisynchronous replication also places a rate limit on busy sessions by constraining the speed at which
binary log events can be sent from master to slave. When one user is too busy, this will slow it down, which
is useful in some deployment situations.

Semisynchronous replication does have some performance impact because commits are slower due to the
need to wait for slaves. This is the tradeoff for increased data integrity. The amount of slowdown is at least
the TCP/IP roundtrip time to send the commit to the slave and wait for the acknowledgment of receipt by
the slave. This means that semisynchronous replication works best for close servers communicating over
fast networks, and worst for distant servers communicating over slow networks.

3.8.1 Semisynchronous Replication Administrative Interface

The administrative interface to semisynchronous replication has several components:

• Two plugins implement semisynchronous capability. There is one plugin for the master side and one for
the slave side.

• System variables control plugin behavior. Some examples:

• rpl_semi_sync_master_enabled

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/commit.html
http://dev.mysql.com/doc/refman/5.5/en/set-variable.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_rpl_semi_sync_master_enabled

Semisynchronous Replication Installation and Configuration

98

Controls whether semisynchronous replication is enabled on the master. To enable or disable the
plugin, set this variable to 1 or 0, respectively. The default is 0 (off).

• rpl_semi_sync_master_timeout

A value in milliseconds that controls how long the master waits on a commit for acknowledgment from
a slave before timing out and reverting to asynchronous replication. The default value is 10000 (10
seconds).

• rpl_semi_sync_slave_enabled

Similar to rpl_semi_sync_master_enabled, but controls the slave plugin.

All rpl_semi_sync_xxx system variables are described at Server System Variables.

• Status variables enable semisynchronous replication monitoring. Some examples:

• Rpl_semi_sync_master_clients

The number of semisynchronous slaves.

• Rpl_semi_sync_master_status

Whether semisynchronous replication currently is operational on the master. The value is 1 if the
plugin has been enabled and a commit acknowledgment has occurred. It is 0 if the plugin is not
enabled or the master has fallen back to asynchronous replication due to commit acknowledgment
timeout.

• Rpl_semi_sync_master_no_tx

The number of commits that were not acknowledged successfully by a slave.

• Rpl_semi_sync_master_yes_tx

The number of commits that were acknowledged successfully by a slave.

• Rpl_semi_sync_slave_status

Whether semisynchronous replication currently is operational on the slave. This is 1 if the plugin has
been enabled and the slave I/O thread is running, 0 otherwise.

All Rpl_semi_sync_xxx status variables are described at Server Status Variables.

The system and status variables are available only if the appropriate master or slave plugin has been
installed with INSTALL PLUGIN.

3.8.2 Semisynchronous Replication Installation and Configuration

Semisynchronous replication is implemented using plugins, so the plugins must be installed into the server
to make them available. After a plugin has been installed, you control it by means of the system variables
associated with it. These system variables are unavailable until the associated plugin has been installed.

This section describes how to install the semisynchronous replication plugins. For general information
about installing plugins, see Installing and Uninstalling Plugins.

To use semisynchronous replication, the following requirements must be satisfied:

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_rpl_semi_sync_master_timeout
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_rpl_semi_sync_slave_enabled
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_rpl_semi_sync_master_enabled
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Rpl_semi_sync_master_clients
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Rpl_semi_sync_master_status
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Rpl_semi_sync_master_no_tx
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Rpl_semi_sync_master_yes_tx
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Rpl_semi_sync_slave_status
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html
http://dev.mysql.com/doc/refman/5.5/en/install-plugin.html
http://dev.mysql.com/doc/refman/5.5/en/server-plugin-loading.html

Semisynchronous Replication Installation and Configuration

99

• MySQL 5.5 or higher must be installed.

• The capability of installing plugins requires a MySQL server that supports dynamic loading. To verify
this, check that the value of the have_dynamic_loading system variable is YES. Binary distributions
should support dynamic loading.

• Replication must already be working. For information on creating a master/slave relationship, see
Section 2.1, “How to Set Up Replication”.

To set up semisynchronous replication, use the following instructions. The INSTALL PLUGIN, SET
GLOBAL, STOP SLAVE, and START SLAVE statements mentioned here require the SUPER privilege.

MySQL distributions include semisynchronous replication plugin files for the master side and the slave
side.

To be usable by a master or slave server, the appropriate plugin library file must be located in the MySQL
plugin directory (the directory named by the plugin_dir system variable). If necessary, set the value of
plugin_dir at server startup to tell the server the plugin directory location.

The plugin library file base names are semisync_master and semisync_slave. The file name suffix
differs per platform (for example, .so for Unix and Unix-like systems, .dll for Windows).

The master plugin library file must be present in the plugin directory of the master server. The slave plugin
library file must be present in the plugin directory of each slave server.

To load the plugins, use the INSTALL PLUGIN statement on the master and on each slave that is to be
semisynchronous (adjust the .so suffix for your platform as necessary).

On the master:

INSTALL PLUGIN rpl_semi_sync_master SONAME 'semisync_master.so';

On each slave:

INSTALL PLUGIN rpl_semi_sync_slave SONAME 'semisync_slave.so';

If an attempt to install a plugin results in an error on Linux similar to that shown here, you must install
libimf:

mysql> INSTALL PLUGIN rpl_semi_sync_master SONAME 'semisync_master.so';
ERROR 1126 (HY000): Can't open shared library
'/usr/local/mysql/lib/plugin/semisync_master.so'
(errno: 22 libimf.so: cannot open shared object file:
No such file or directory)

You can obtain libimf from http://dev.mysql.com/downloads/os-linux.html.

To see which plugins are installed, use the SHOW PLUGINS statement, or query the
INFORMATION_SCHEMA.PLUGINS table.

To verify plugin installation, examine the INFORMATION_SCHEMA.PLUGINS table or use the SHOW
PLUGINS statement (see Obtaining Server Plugin Information). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS FROM INFORMATION_SCHEMA.PLUGINS
 -> WHERE PLUGIN_NAME LIKE '%semi%';
+----------------------+---------------+

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_have_dynamic_loading
http://dev.mysql.com/doc/refman/5.5/en/install-plugin.html
http://dev.mysql.com/doc/refman/5.5/en/set-variable.html
http://dev.mysql.com/doc/refman/5.5/en/set-variable.html
http://dev.mysql.com/doc/refman/5.5/en/stop-slave.html
http://dev.mysql.com/doc/refman/5.5/en/start-slave.html
http://dev.mysql.com/doc/refman/5.5/en/privileges-provided.html#priv_super
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_plugin_dir
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_plugin_dir
http://dev.mysql.com/doc/refman/5.5/en/install-plugin.html
http://dev.mysql.com/downloads/os-linux.html
http://dev.mysql.com/doc/refman/5.5/en/show-plugins.html
http://dev.mysql.com/doc/refman/5.5/en/plugins-table.html
http://dev.mysql.com/doc/refman/5.5/en/plugins-table.html
http://dev.mysql.com/doc/refman/5.5/en/show-plugins.html
http://dev.mysql.com/doc/refman/5.5/en/show-plugins.html
http://dev.mysql.com/doc/refman/5.5/en/obtaining-plugin-information.html

Semisynchronous Replication Monitoring

100

| PLUGIN_NAME | PLUGIN_STATUS |
+----------------------+---------------+
| rpl_semi_sync_master | ACTIVE |
+----------------------+---------------+

After a semisynchronous replication plugin has been installed, it is disabled by default. The plugins must be
enabled both on the master side and the slave side to enable semisynchronous replication. If only one side
is enabled, replication will be asynchronous.

To control whether an installed plugin is enabled, set the appropriate system variables. You can set these
variables at runtime using SET GLOBAL, or at server startup on the command line or in an option file.

At runtime, these master-side system variables are available:

SET GLOBAL rpl_semi_sync_master_enabled = {0|1};
SET GLOBAL rpl_semi_sync_master_timeout = N;

On the slave side, this system variable is available:

SET GLOBAL rpl_semi_sync_slave_enabled = {0|1};

For rpl_semi_sync_master_enabled or rpl_semi_sync_slave_enabled, the value should be 1 to
enable semisynchronous replication or 0 to disable it. By default, these variables are set to 0.

For rpl_semi_sync_master_timeout, the value N is given in milliseconds. The default value is 10000
(10 seconds).

If you enable semisynchronous replication on a slave at runtime, you must also start the slave I/O thread
(stopping it first if it is already running) to cause the slave to connect to the master and register as a
semisynchronous slave:

STOP SLAVE IO_THREAD;
START SLAVE IO_THREAD;

If the I/O thread is already running and you do not restart it, the slave continues to use asynchronous
replication.

At server startup, the variables that control semisynchronous replication can be set as command-line
options or in an option file. A setting listed in an option file takes effect each time the server starts. For
example, you can set the variables in my.cnf files on the master and slave sides as follows.

On the master:

[mysqld]
rpl_semi_sync_master_enabled=1
rpl_semi_sync_master_timeout=1000 # 1 second

On each slave:

[mysqld]
rpl_semi_sync_slave_enabled=1

3.8.3 Semisynchronous Replication Monitoring

The plugins for the semisynchronous replication capability expose several system and status variables that
you can examine to determine its configuration and operational state.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/set-variable.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_rpl_semi_sync_master_enabled
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_rpl_semi_sync_slave_enabled
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_rpl_semi_sync_master_timeout

Semisynchronous Replication Monitoring

101

The system variable reflect how semisynchronous replication is configured. To check their values, use
SHOW VARIABLES:

mysql> SHOW VARIABLES LIKE 'rpl_semi_sync%';

The status variables enable you to monitor the operation of semisynchronous replication. To check their
values, use SHOW STATUS:

mysql> SHOW STATUS LIKE 'Rpl_semi_sync%';

When the master switches between asynchronous or semisynchronous replication due to commit-blocking
timeout or a slave catching up, it sets the value of the Rpl_semi_sync_master_status status variable
appropriately. Automatic fallback from semisynchronous to asynchronous replication on the master means
that it is possible for the rpl_semi_sync_master_enabled system variable to have a value of 1 on
the master side even when semisynchronous replication is in fact not operational at the moment. You can
monitor the Rpl_semi_sync_master_status status variable to determine whether the master currently
is using asynchronous or semisynchronous replication.

To see how many semisynchronous slaves are connected, check Rpl_semi_sync_master_clients.

The number of commits that have been acknowledged successfully or unsuccessfully by slaves are
indicated by the Rpl_semi_sync_master_yes_tx and Rpl_semi_sync_master_no_tx variables.

On the slave side, Rpl_semi_sync_slave_status indicates whether semisynchronous replication
currently is operational.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/show-variables.html
http://dev.mysql.com/doc/refman/5.5/en/show-status.html
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Rpl_semi_sync_master_status
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_rpl_semi_sync_master_enabled
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Rpl_semi_sync_master_status
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Rpl_semi_sync_master_clients
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Rpl_semi_sync_master_yes_tx
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Rpl_semi_sync_master_no_tx
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Rpl_semi_sync_slave_status

102

www.EngineeringBooksPdf.com

103

Chapter 4 Replication Notes and Tips

Table of Contents
4.1 Replication Features and Issues .. 103

4.1.1 Replication and AUTO_INCREMENT .. 104
4.1.2 Replication and BLACKHOLE Tables .. 105
4.1.3 Replication and Character Sets .. 105
4.1.4 Replication and CHECKSUM TABLE .. 105
4.1.5 Replication of CREATE ... IF NOT EXISTS Statements .. 105
4.1.6 Replication of CREATE TABLE ... SELECT Statements ... 106
4.1.7 Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER 107
4.1.8 Replication of CURRENT_USER() .. 107
4.1.9 Replication of DROP ... IF EXISTS Statements ... 107
4.1.10 Replication with Differing Table Definitions on Master and Slave 108
4.1.11 Replication and DIRECTORY Table Options ... 113
4.1.12 Replication of Invoked Features .. 114
4.1.13 Replication and Floating-Point Values ... 115
4.1.14 Replication and FLUSH .. 116
4.1.15 Replication and System Functions .. 116
4.1.16 Replication and LIMIT .. 118
4.1.17 Replication and LOAD DATA INFILE .. 118
4.1.18 Replication and the Slow Query Log ... 118
4.1.19 Replication and Partitioning .. 119
4.1.20 Replication and REPAIR TABLE ... 119
4.1.21 Replication and Master or Slave Shutdowns .. 119
4.1.22 Replication and max_allowed_packet .. 120
4.1.23 Replication and MEMORY Tables ... 120
4.1.24 Replication and Temporary Tables .. 121
4.1.25 Replication of the mysql System Database .. 121
4.1.26 Replication and the Query Optimizer ... 121
4.1.27 Replication and Reserved Words .. 122
4.1.28 SET PASSWORD and Row-Based Replication .. 122
4.1.29 Slave Errors During Replication .. 122
4.1.30 Replication of Server-Side Help Tables ... 123
4.1.31 Replication and Server SQL Mode .. 125
4.1.32 Replication Retries and Timeouts .. 125
4.1.33 Replication and TIMESTAMP .. 125
4.1.34 Replication and Time Zones ... 125
4.1.35 Replication and Transactions .. 125
4.1.36 Replication and Triggers ... 127
4.1.37 Replication and TRUNCATE TABLE ... 127
4.1.38 Replication and Variables ... 128
4.1.39 Replication and Views .. 129

4.2 Replication Compatibility Between MySQL Versions ... 130
4.3 Upgrading a Replication Setup .. 131
4.4 Troubleshooting Replication .. 132
4.5 How to Report Replication Bugs or Problems ... 133

4.1 Replication Features and Issues

www.EngineeringBooksPdf.com

Replication and AUTO_INCREMENT

104

The following sections provide information about what is supported and what is not in MySQL replication,
and about specific issues and situations that may occur when replicating certain statements.

Statement-based replication depends on compatibility at the SQL level between the master and slave.
In others, successful SBR requires that any SQL features used be supported by both the master and the
slave servers. For example, if you use a feature on the master server that is available only in MySQL 5.5
(or later), you cannot replicate to a slave that uses MySQL 5.1 (or earlier).

Such incompatibilities also can occur within a release series when using pre-production releases of
MySQL. For example, the SLEEP() function is available beginning with MySQL 5.0.12. If you use this
function on the master, you cannot replicate to a slave that uses MySQL 5.0.11 or earlier.

For this reason, use Generally Available (GA) releases of MySQL for statement-based replication in a
production setting, since we do not introduce new SQL statements or change their behavior within a given
release series once that series reaches GA release status.

If you are planning to use statement-based replication between MySQL 5.5 and a previous MySQL release
series, it is also a good idea to consult the edition of the MySQL Reference Manual corresponding to the
earlier release series for information regarding the replication characteristics of that series.

With MySQL's statement-based replication, there may be issues with replicating stored routines or triggers.
You can avoid these issues by using MySQL's row-based replication instead. For a detailed list of issues,
see Binary Logging of Stored Programs. For more information about row-based logging and row-based
replication, see Binary Logging Formats, and Section 2.2, “Replication Formats”.

For additional information specific to replication and InnoDB, see InnoDB and MySQL Replication. For
information relating to replication with NDB Cluster, see NDB Cluster Replication.

4.1.1 Replication and AUTO_INCREMENT

Statement-based replication of AUTO_INCREMENT, LAST_INSERT_ID(), and TIMESTAMP values is done
correctly, subject to the following exceptions:

• When using statement-based replication prior to MySQL 5.5.30, AUTO_INCREMENT columns in tables
on the slave must match the same columns on the master; that is, AUTO_INCREMENT columns must be
replicated to AUTO_INCREMENT columns. (Bug #12669186)

• A statement invoking a trigger or function that causes an update to an AUTO_INCREMENT column is not
replicated correctly using statement-based replication. In MySQL 5.5, such statements are marked as
unsafe. (Bug #45677)

• An INSERT into a table that has a composite primary key that includes an AUTO_INCREMENT column
that is not the first column of this composite key is not safe for statement-based logging or replication.
Beginning with MySQL 5.5.25, such statements are marked as unsafe. (Bug #11754117, Bug #45670)

This issue does not affect tables using the InnoDB storage engine, since an InnoDB table with an
AUTO_INCREMENT column requires at least one key where the auto-increment column is the only or
leftmost column.

• Adding an AUTO_INCREMENT column to a table with ALTER TABLE might not produce the same
ordering of the rows on the slave and the master. This occurs because the order in which the rows
are numbered depends on the specific storage engine used for the table and the order in which
the rows were inserted. If it is important to have the same order on the master and slave, the rows
must be ordered before assigning an AUTO_INCREMENT number. Assuming that you want to add an
AUTO_INCREMENT column to a table t1 that has columns col1 and col2, the following statements
produce a new table t2 identical to t1 but with an AUTO_INCREMENT column:

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/miscellaneous-functions.html#function_sleep
http://dev.mysql.com/doc/refman/5.5/en/stored-programs-logging.html
http://dev.mysql.com/doc/refman/5.5/en/binary-log-formats.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-and-mysql-replication.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster-replication.html
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_last-insert-id
http://dev.mysql.com/doc/refman/5.5/en/datetime.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_auto_increment
http://dev.mysql.com/doc/refman/5.5/en/alter-table.html

Replication and BLACKHOLE Tables

105

CREATE TABLE t2 LIKE t1;
ALTER TABLE t2 ADD id INT AUTO_INCREMENT PRIMARY KEY;
INSERT INTO t2 SELECT * FROM t1 ORDER BY col1, col2;

Important

To guarantee the same ordering on both master and slave, the ORDER BY clause
must name all columns of t1.

The instructions just given are subject to the limitations of CREATE TABLE ... LIKE: Foreign key
definitions are ignored, as are the DATA DIRECTORY and INDEX DIRECTORY table options. If a table
definition includes any of those characteristics, create t2 using a CREATE TABLE statement that is
identical to the one used to create t1, but with the addition of the AUTO_INCREMENT column.

Regardless of the method used to create and populate the copy having the AUTO_INCREMENT column,
the final step is to drop the original table and then rename the copy:

DROP t1;
ALTER TABLE t2 RENAME t1;

See also Problems with ALTER TABLE.

4.1.2 Replication and BLACKHOLE Tables

The BLACKHOLE storage engine accepts data but discards it and does not store it. When performing binary
logging, all inserts to such tables are always logged, regardless of the logging format in use. Updates and
deletes are handled differently depending on whether statement based or row based logging is in use.
With the statement based logging format, all statements affecting BLACKHOLE tables are logged, but their
effects ignored. When using row-based logging, updates and deletes to such tables are simply skipped—
they are not written to the binary log. In MySQL 5.5.32 and later, a warning is logged whenever this occurs
(Bug #13004581)

For this reason we recommend when you replicate to tables using the BLACKHOLE storage engine that you
have the binlog_format server variable set to STATEMENT, and not to either ROW or MIXED.

4.1.3 Replication and Character Sets

The following applies to replication between MySQL servers that use different character sets:

• If the master has databases with a character set different from the global character_set_server
value, you should design your CREATE TABLE statements so that they do not implicitly rely on the
database default character set. A good workaround is to state the character set and collation explicitly in
CREATE TABLE statements.

4.1.4 Replication and CHECKSUM TABLE

CHECKSUM TABLE returns a checksum that is calculated row by row, using a method that depends on the
table row storage format, which is not guaranteed to remain the same between MySQL release series.
For example, the storage format for temporal types such as TIME, DATETIME, and TIMESTAMP changes
in MySQL 5.6 prior to MySQL 5.6.5, so if a 5.5 table is upgraded to MySQL 5.6, the checksum value may
change.

4.1.5 Replication of CREATE ... IF NOT EXISTS Statements

MySQL applies these rules when various CREATE ... IF NOT EXISTS statements are replicated:

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/create-table-like.html
http://dev.mysql.com/doc/refman/5.5/en/create-table.html
http://dev.mysql.com/doc/refman/5.5/en/alter-table-problems.html
http://dev.mysql.com/doc/refman/5.5/en/blackhole-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/blackhole-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_character_set_server
http://dev.mysql.com/doc/refman/5.5/en/create-table.html
http://dev.mysql.com/doc/refman/5.5/en/create-table.html
http://dev.mysql.com/doc/refman/5.5/en/checksum-table.html
http://dev.mysql.com/doc/refman/5.5/en/time.html
http://dev.mysql.com/doc/refman/5.5/en/datetime.html
http://dev.mysql.com/doc/refman/5.5/en/datetime.html

Replication of CREATE TABLE ... SELECT Statements

106

• Every CREATE DATABASE IF NOT EXISTS statement is replicated, whether or not the database
already exists on the master.

• Similarly, every CREATE TABLE IF NOT EXISTS statement without a SELECT is replicated, whether or
not the table already exists on the master. This includes CREATE TABLE IF NOT EXISTS ... LIKE.
Replication of CREATE TABLE IF NOT EXISTS ... SELECT follows somewhat different rules; see
Section 4.1.6, “Replication of CREATE TABLE ... SELECT Statements”, for more information.

• CREATE EVENT IF NOT EXISTS is always replicated in MySQL 5.5, whether or not the event named
in the statement already exists on the master.

See also Bug #45574.

4.1.6 Replication of CREATE TABLE ... SELECT Statements

This section discusses how MySQL replicates CREATE TABLE ... SELECT statements.

These behaviors are not dependent on MySQL version:

• CREATE TABLE ... SELECT always performs an implicit commit (Statements That Cause an Implicit
Commit).

• If destination table does not exist, logging occurs as follows. It does not matter whether IF NOT
EXISTS is present.

• STATEMENT or MIXED format: The statement is logged as written.

• ROW format: The statement is logged as a CREATE TABLE statement followed by a series of insert-row
events.

• If the statement fails, nothing is logged. This includes the case that the destination table exists and IF
NOT EXISTS is not given.

When the destination table exists and IF NOT EXISTS is given, MySQL handles the statement in a
version-dependent way.

In MySQL 5.1 before 5.1.51 and in MySQL 5.5 before 5.5.6 (this is the original behavior):

• STATEMENT or MIXED format: The statement is logged as written.

• ROW format: The statement is logged as a CREATE TABLE statement followed by a series of insert-row
events.

In MySQL 5.1 as of 5.1.51:

• STATEMENT or MIXED format: The statement is logged as the equivalent pair of CREATE TABLE and
INSERT INTO ... SELECT statements.

• ROW format: The statement is logged as a CREATE TABLE statement followed by a series of insert-row
events.

In MySQL 5.5 as of 5.5.6:

• Nothing is inserted or logged.

These version dependencies arise due to a change in MySQL 5.5.6 in handling of CREATE TABLE ...
SELECT not to insert rows if the destination table already exists, and a change made in MySQL 5.1.51
to preserve forward compatibility in replication of such statements from a 5.1 master to a 5.5 slave. For
details, see CREATE TABLE ... SELECT Syntax.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/create-database.html
http://dev.mysql.com/doc/refman/5.5/en/create-table.html
http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/create-table-like.html
http://dev.mysql.com/doc/refman/5.5/en/create-table-select.html
http://dev.mysql.com/doc/refman/5.5/en/create-event.html
http://dev.mysql.com/doc/refman/5.5/en/create-table-select.html
http://dev.mysql.com/doc/refman/5.5/en/create-table-select.html
http://dev.mysql.com/doc/refman/5.5/en/implicit-commit.html
http://dev.mysql.com/doc/refman/5.5/en/implicit-commit.html
http://dev.mysql.com/doc/refman/5.5/en/create-table.html
http://dev.mysql.com/doc/refman/5.5/en/create-table.html
http://dev.mysql.com/doc/refman/5.5/en/create-table.html
http://dev.mysql.com/doc/refman/5.5/en/insert-select.html
http://dev.mysql.com/doc/refman/5.5/en/create-table.html
http://dev.mysql.com/doc/refman/5.5/en/create-table-select.html
http://dev.mysql.com/doc/refman/5.5/en/create-table-select.html
http://dev.mysql.com/doc/refman/5.5/en/create-table-select.html

Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER

107

When using statement-based replication between a MySQL 5.6 or later slave and a master running a
previous version of MySQL, a CREATE TABLE ... SELECT statement causing changes in other tables
on the master fails on the slave, causing replication to stop. This is due to the fact that MySQL 5.6 does
not allow a CREATE TABLE ... SELECT statement to make any changes in tables other than the table
that is created by the statement—a change in behavior from previous versions of MySQL, which permitted
these statements to do so. To keep this from happening, you should use row-based replication, rewrite
the offending statement before running it on the master, or upgrade the master to MySQL 5.6 (or later). (If
you choose to upgrade the master, keep in mind that such a CREATE TABLE ... SELECT statement will
fail there as well, following the upgrade, unless the statement is rewritten to remove any side effects on
other tables.) This is not an issue when using row-based replication, because the statement is logged as
a CREATE TABLE statement with any changes to table data logged as row-insert events (or possibly row-
update events), rather than as the entire CREATE TABLE ... SELECT statement.

4.1.7 Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER

In MySQL 5.5, the statements CREATE SERVER, ALTER SERVER, and DROP SERVER are not written to
the binary log, regardless of the binary logging format that is in use.

4.1.8 Replication of CURRENT_USER()

The following statements support use of the CURRENT_USER() function to take the place of the name of
(and, possibly, the host for) an affected user or a definer; in such cases, CURRENT_USER() is expanded
where and as needed:

• DROP USER

• RENAME USER

• GRANT

• REVOKE

• CREATE FUNCTION

• CREATE PROCEDURE

• CREATE TRIGGER

• CREATE EVENT

• CREATE VIEW

• ALTER EVENT

• ALTER VIEW

• SET PASSWORD

When CURRENT_USER() or CURRENT_USER is used as the definer in any of the statements CREATE
FUNCTION, CREATE PROCEDURE, CREATE TRIGGER, CREATE EVENT, CREATE VIEW, or ALTER VIEW
when binary logging is enabled, the function reference is expanded before it is written to the binary log,
so that the statement refers to the same user on both the master and the slave when the statement is
replicated. CURRENT_USER() or CURRENT_USER is also expanded prior to being written to the binary log
when used in DROP USER, RENAME USER, GRANT, REVOKE, or ALTER EVENT.

4.1.9 Replication of DROP ... IF EXISTS Statements

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/create-table-select.html
http://dev.mysql.com/doc/refman/5.5/en/create-table-select.html
http://dev.mysql.com/doc/refman/5.5/en/create-table-select.html
http://dev.mysql.com/doc/refman/5.5/en/create-table.html
http://dev.mysql.com/doc/refman/5.5/en/create-table-select.html
http://dev.mysql.com/doc/refman/5.5/en/create-server.html
http://dev.mysql.com/doc/refman/5.5/en/alter-server.html
http://dev.mysql.com/doc/refman/5.5/en/drop-server.html
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_current-user
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_current-user
http://dev.mysql.com/doc/refman/5.5/en/drop-user.html
http://dev.mysql.com/doc/refman/5.5/en/rename-user.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/revoke.html
http://dev.mysql.com/doc/refman/5.5/en/create-function.html
http://dev.mysql.com/doc/refman/5.5/en/create-procedure.html
http://dev.mysql.com/doc/refman/5.5/en/create-trigger.html
http://dev.mysql.com/doc/refman/5.5/en/create-event.html
http://dev.mysql.com/doc/refman/5.5/en/create-view.html
http://dev.mysql.com/doc/refman/5.5/en/alter-event.html
http://dev.mysql.com/doc/refman/5.5/en/alter-view.html
http://dev.mysql.com/doc/refman/5.5/en/set-password.html
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_current-user
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_current-user
http://dev.mysql.com/doc/refman/5.5/en/create-function.html
http://dev.mysql.com/doc/refman/5.5/en/create-function.html
http://dev.mysql.com/doc/refman/5.5/en/create-procedure.html
http://dev.mysql.com/doc/refman/5.5/en/create-trigger.html
http://dev.mysql.com/doc/refman/5.5/en/create-event.html
http://dev.mysql.com/doc/refman/5.5/en/create-view.html
http://dev.mysql.com/doc/refman/5.5/en/alter-view.html
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_current-user
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_current-user
http://dev.mysql.com/doc/refman/5.5/en/drop-user.html
http://dev.mysql.com/doc/refman/5.5/en/rename-user.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/revoke.html
http://dev.mysql.com/doc/refman/5.5/en/alter-event.html

Replication with Differing Table Definitions on Master and Slave

108

The DROP DATABASE IF EXISTS, DROP TABLE IF EXISTS, and DROP VIEW IF EXISTS
statements are always replicated, even if the database, table, or view to be dropped does not exist on the
master. This is to ensure that the object to be dropped no longer exists on either the master or the slave,
once the slave has caught up with the master.

DROP ... IF EXISTS statements for stored programs (stored procedures and functions, triggers, and
events) are also replicated, even if the stored program to be dropped does not exist on the master.

4.1.10 Replication with Differing Table Definitions on Master and Slave

Source and target tables for replication do not have to be identical. A table on the master can have more or
fewer columns than the slave's copy of the table. In addition, corresponding table columns on the master
and the slave can use different data types, subject to certain conditions.

Note

Replication between tables which are partitioned differently from one another is not
supported. See Section 4.1.19, “Replication and Partitioning”.

In all cases where the source and target tables do not have identical definitions, the database and table
names must be the same on both the master and the slave. Additional conditions are discussed, with
examples, in the following two sections.

4.1.10.1 Replication with More Columns on Master or Slave

You can replicate a table from the master to the slave such that the master and slave copies of the table
have differing numbers of columns, subject to the following conditions:

• Columns common to both versions of the table must be defined in the same order on the master and the
slave.

(This is true even if both tables have the same number of columns.)

• Columns common to both versions of the table must be defined before any additional columns.

This means that executing an ALTER TABLE statement on the slave where a new column is inserted
into the table within the range of columns common to both tables causes replication to fail, as shown in
the following example:

Suppose that a table t, existing on the master and the slave, is defined by the following CREATE TABLE
statement:

CREATE TABLE t (
 c1 INT,
 c2 INT,
 c3 INT
);

Suppose that the ALTER TABLE statement shown here is executed on the slave:

ALTER TABLE t ADD COLUMN cnew1 INT AFTER c3;

The previous ALTER TABLE is permitted on the slave because the columns c1, c2, and c3 that are
common to both versions of table t remain grouped together in both versions of the table, before any
columns that differ.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/drop-database.html
http://dev.mysql.com/doc/refman/5.5/en/drop-table.html
http://dev.mysql.com/doc/refman/5.5/en/drop-view.html
http://dev.mysql.com/doc/refman/5.5/en/alter-table.html
http://dev.mysql.com/doc/refman/5.5/en/create-table.html
http://dev.mysql.com/doc/refman/5.5/en/alter-table.html
http://dev.mysql.com/doc/refman/5.5/en/alter-table.html

Replication with Differing Table Definitions on Master and Slave

109

However, the following ALTER TABLE statement cannot be executed on the slave without causing
replication to break:

ALTER TABLE t ADD COLUMN cnew2 INT AFTER c2;

Replication fails after execution on the slave of the ALTER TABLE statement just shown, because the
new column cnew2 comes between columns common to both versions of t.

• Each “extra” column in the version of the table having more columns must have a default value.

Note

A column's default value is determined by a number of factors, including its type,
whether it is defined with a DEFAULT option, whether it is declared as NULL, and
the server SQL mode in effect at the time of its creation; for more information, see
Data Type Default Values).

In addition, when the slave's copy of the table has more columns than the master's copy, each column
common to the tables must use the same data type in both tables.

Examples. The following examples illustrate some valid and invalid table definitions:

More columns on the master. The following table definitions are valid and replicate correctly:

master> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);
slave> CREATE TABLE t1 (c1 INT, c2 INT);

The following table definitions would raise an error because the definitions of the columns common to both
versions of the table are in a different order on the slave than they are on the master:

master> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);
slave> CREATE TABLE t1 (c2 INT, c1 INT);

The following table definitions would also raise an error because the definition of the extra column on the
master appears before the definitions of the columns common to both versions of the table:

master> CREATE TABLE t1 (c3 INT, c1 INT, c2 INT);
slave> CREATE TABLE t1 (c1 INT, c2 INT);

More columns on the slave. The following table definitions are valid and replicate correctly:

master> CREATE TABLE t1 (c1 INT, c2 INT);
slave> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);

The following definitions raise an error because the columns common to both versions of the table are not
defined in the same order on both the master and the slave:

master> CREATE TABLE t1 (c1 INT, c2 INT);
slave> CREATE TABLE t1 (c2 INT, c1 INT, c3 INT);

The following table definitions also raise an error because the definition for the extra column in the slave's
version of the table appears before the definitions for the columns which are common to both versions of
the table:

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/alter-table.html
http://dev.mysql.com/doc/refman/5.5/en/alter-table.html
http://dev.mysql.com/doc/refman/5.5/en/data-type-defaults.html

Replication with Differing Table Definitions on Master and Slave

110

master> CREATE TABLE t1 (c1 INT, c2 INT);
slave> CREATE TABLE t1 (c3 INT, c1 INT, c2 INT);

The following table definitions fail because the slave's version of the table has additional columns
compared to the master's version, and the two versions of the table use different data types for the
common column c2:

master> CREATE TABLE t1 (c1 INT, c2 BIGINT);
slave> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);

4.1.10.2 Replication of Columns Having Different Data Types

Corresponding columns on the master's and the slave's copies of the same table ideally should have the
same data type. However, beginning with MySQL 5.1.21, this is not always strictly enforced, as long as
certain conditions are met.

All other things being equal, it is always possible to replicate from a column of a given data type to another
column of the same type and same size or width, where applicable, or larger. For example, you can
replicate from a CHAR(10) column to another CHAR(10), or from a CHAR(10) column to a CHAR(25)
column without any problems. In certain cases, it also possible to replicate from a column having one data
type (on the master) to a column having a different data type (on the slave); when the data type of the
master's version of the column is promoted to a type that is the same size or larger on the slave, this is
known as attribute promotion.

Attribute promotion can be used with both statement-based and row-based replication, and is not
dependent on the storage engine used by either the master or the slave. However, the choice of logging
format does have an effect on the type conversions that are permitted; the particulars are discussed later in
this section.

Important

Whether you use statement-based or row-based replication, the slave's copy of the
table cannot contain more columns than the master's copy if you wish to employ
attribute promotion.

Statement-based replication. When using statement-based replication, a simple rule of thumb to
follow is, “If the statement run on the master would also execute successfully on the slave, it should also
replicate successfully”. In other words, if the statement uses a value that is compatible with the type of a
given column on the slave, the statement can be replicated. For example, you can insert any value that
fits in a TINYINT column into a BIGINT column as well; it follows that, even if you change the type of a
TINYINT column in the slave's copy of a table to BIGINT, any insert into that column on the master that
succeeds should also succeed on the slave, since it is impossible to have a legal TINYINT value that is
large enough to exceed a BIGINT column.

Prior to MySQL 5.5.30, when using statement-based replication, AUTO_INCREMENT columns were
required to be the same on both the master and the slave; otherwise, updates could be applied to the
wrong table on the slave. (Bug #12669186)

Row-based replication: attribute promotion and demotion. Formerly, due to the fact that in row-
based replication changes rather than statements are replicated, and that these changes are transmitted
using formats that do not always map directly to MySQL server column data types, you could not replicate
between different subtypes of the same general type (for example, from TINYINT to BIGINT, both INT
subtypes). However, beginning with MySQL 5.5.3, MySQL Replication supports attribute promotion and
demotion between smaller data types and larger types. It is also possible to specify whether or not to
permit lossy (truncated) or non-lossy conversions of demoted column values, as explained later in this
section.

www.EngineeringBooksPdf.com

Replication with Differing Table Definitions on Master and Slave

111

Lossy and non-lossy conversions. In the event that the target type cannot represent the value being
inserted, a decision must be made on how to handle the conversion. If we permit the conversion but
truncate (or otherwise modify) the source value to achieve a “fit” in the target column, we make what is
known as a lossy conversion. A conversion which does not require truncation or similar modifications to fit
the source column value in the target column is a non-lossy conversion.

Type conversion modes (slave_type_conversions variable). The setting of the
slave_type_conversions global server variable controls the type conversion mode used on the slave.
This variable takes a set of values from the following table, which shows the effects of each mode on the
slave's type-conversion behavior:

Mode Effect

ALL_LOSSY In this mode, type conversions that would mean loss of information
are permitted.

This does not imply that non-lossy conversions are permitted,
merely that only cases requiring either lossy conversions or no
conversion at all are permitted; for example, enabling only this
mode permits an INT column to be converted to TINYINT (a lossy
conversion), but not a TINYINT column to an INT column (non-
lossy). Attempting the latter conversion in this case would cause
replication to stop with an error on the slave.

ALL_NON_LOSSY This mode permits conversions that do not require truncation
or other special handling of the source value; that is, it permits
conversions where the target type has a wider range than the
source type.

Setting this mode has no bearing on whether lossy conversions
are permitted; this is controlled with the ALL_LOSSY mode. If only
ALL_NON_LOSSY is set, but not ALL_LOSSY, then attempting a
conversion that would result in the loss of data (such as INT to
TINYINT, or CHAR(25) to VARCHAR(20)) causes the slave to stop
with an error.

ALL_LOSSY,ALL_NON_LOSSY When this mode is set, all supported type conversions are permitted,
whether or not they are lossy conversions.

[empty] When slave_type_conversions is not set, no attribute
promotion or demotion is permitted; this means that all columns in
the source and target tables must be of the same types.

This mode is the default.

Changing the type conversion mode requires restarting the slave with the new
slave_type_conversions setting.

Supported conversions. Supported conversions between different but similar data types are shown in
the following list:

• Between any of the integer types TINYINT, SMALLINT, MEDIUMINT, INT, and BIGINT.

This includes conversions between the signed and unsigned versions of these types.

Lossy conversions are made by truncating the source value to the maximum (or minimum) permitted
by the target column. For insuring non-lossy conversions when going from unsigned to signed types,

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/integer-types.html
http://dev.mysql.com/doc/refman/5.5/en/integer-types.html
http://dev.mysql.com/doc/refman/5.5/en/integer-types.html
http://dev.mysql.com/doc/refman/5.5/en/integer-types.html
http://dev.mysql.com/doc/refman/5.5/en/integer-types.html

Replication with Differing Table Definitions on Master and Slave

112

the target column must be large enough to accommodate the range of values in the source column. For
example, you can demote TINYINT UNSIGNED non-lossily to SMALLINT, but not to TINYINT.

• Between any of the decimal types DECIMAL, FLOAT, DOUBLE, and NUMERIC.

FLOAT to DOUBLE is a non-lossy conversion; DOUBLE to FLOAT can only be handled lossily. A
conversion from DECIMAL(M,D) to DECIMAL(M',D') where D' >= D and (M'-D') >= (M-D) are
non-lossy; for any case where M' < M, D' < D, or both, only a lossy conversion can be made.

For any of the decimal types, if a value to be stored cannot be fit in the target type, the value is rounded
down according to the rounding rules defined for the server elsewhere in the documentation. See
Rounding Behavior, for information about how this is done for decimal types.

• Between any of the string types CHAR, VARCHAR, and TEXT, including conversions between different
widths.

Conversion of a CHAR, VARCHAR, or TEXT to a CHAR, VARCHAR, or TEXT column the same size or larger
is never lossy. Lossy conversion is handled by inserting only the first N characters of the string on the
slave, where N is the width of the target column.

Important

Replication between columns using different character sets is not supported.

• Between any of the binary data types BINARY, VARBINARY, and BLOB, including conversions between
different widths.

Conversion of a BINARY, VARBINARY, or BLOB to a BINARY, VARBINARY, or BLOB column the same
size or larger is never lossy. Lossy conversion is handled by inserting only the first N bytes of the string
on the slave, where N is the width of the target column.

• Between any 2 BIT columns of any 2 sizes.

When inserting a value from a BIT(M) column into a BIT(M') column, where M' > M, the most
significant bits of the BIT(M') columns are cleared (set to zero) and the M bits of the BIT(M) value are
set as the least significant bits of the BIT(M') column.

When inserting a value from a source BIT(M) column into a target BIT(M') column, where M' < M,
the maximum possible value for the BIT(M') column is assigned; in other words, an “all-set” value is
assigned to the target column.

Conversions between types not in the previous list are not permitted.

Replication type conversions in MySQL 5.5.3 and earlier. Prior to MySQL 5.5.3, with row-based
binary logging, you could not replicate between different INT subtypes, such as from TINYINT to BIGINT,
because changes to columns of these types were represented differently from one another in the binary
log when using row-based logging. (However, you could replicate from BLOB to TEXT using row-based
replication because changes to BLOB and TEXT columns were represented using the same format in the
binary log.)

Supported conversions for attribute promotion when using row-based replication prior to MySQL 5.5.3 are
shown in the following table:

From (Master) To (Slave)

BINARY CHAR

BLOB TEXT

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/fixed-point-types.html
http://dev.mysql.com/doc/refman/5.5/en/floating-point-types.html
http://dev.mysql.com/doc/refman/5.5/en/floating-point-types.html
http://dev.mysql.com/doc/refman/5.5/en/fixed-point-types.html
http://dev.mysql.com/doc/refman/5.5/en/precision-math-rounding.html
http://dev.mysql.com/doc/refman/5.5/en/char.html
http://dev.mysql.com/doc/refman/5.5/en/char.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/binary-varbinary.html
http://dev.mysql.com/doc/refman/5.5/en/binary-varbinary.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/bit-type.html
http://dev.mysql.com/doc/refman/5.5/en/binary-varbinary.html
http://dev.mysql.com/doc/refman/5.5/en/char.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html

Replication and DIRECTORY Table Options

113

From (Master) To (Slave)

CHAR BINARY

DECIMAL NUMERIC

NUMERIC DECIMAL

TEXT BLOB

VARBINARY VARCHAR

VARCHAR VARBINARY

Note

In all cases, the size or width of the column on the slave must be equal to or
greater than that of the column on the master. For example, you could replicate
from a CHAR(10) column on the master to a column that used BINARY(10) or
BINARY(25) on the slave, but you could not replicate from a CHAR(10) column on
the master to BINARY(5) column on the slave.

Any unique index (including primary keys) having a prefix must use a prefix of
the same length on both master and slave; in such cases, differing prefix lengths
are disallowed. It is possible to use a nonunique index whose prefix length differs
between master and slave, but this can cause serious performance issues,
particularly when the prefix used on the master is longer. This is due to the fact that
2 unique prefixes of a given length may no longer be unique at a shorter length; for
example, the words catalogue and catamount have the 5-character prefixes catal
and catam, respectively, but share the same 4-character prefix (cata). This can
lead to queries that use such indexes executing less efficiently on the slave, when
a shorter prefix is employed in the slave' definition of the same index than on the
master.

For DECIMAL and NUMERIC columns, both the mantissa (M) and the number of
decimals (D) must be the same size or larger on the slave as compared with the
master. For example, replication from a NUMERIC(5,4) to a DECIMAL(6,4)
worked, but not from a NUMERIC(5,4) to a DECIMAL(5,3).

Prior to MySQL 5.5.3, MySQL replication did not support attribute promotion of any of the following data
types to or from any other data type when using row-based replication:

• INT (including TINYINT, SMALLINT, MEDIUMINT, BIGINT).

Promotion between INT subtypes—for example, from SMALLINT to BIGINT—was also not supported
prior to MySQL 5.5.3.

• SET or ENUM.

• FLOAT or DOUBLE.

• All of the data types relating to dates, times, or both: DATE, TIME, DATETIME, TIMESTAMP, and YEAR.

4.1.11 Replication and DIRECTORY Table Options

If a DATA DIRECTORY or INDEX DIRECTORY table option is used in a CREATE TABLE statement on the
master server, the table option is also used on the slave. This can cause problems if no corresponding
directory exists in the slave host file system or if it exists but is not accessible to the slave server. This can
be overridden by using the NO_DIR_IN_CREATE server SQL mode on the slave, which causes the slave

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/char.html
http://dev.mysql.com/doc/refman/5.5/en/binary-varbinary.html
http://dev.mysql.com/doc/refman/5.5/en/fixed-point-types.html
http://dev.mysql.com/doc/refman/5.5/en/fixed-point-types.html
http://dev.mysql.com/doc/refman/5.5/en/fixed-point-types.html
http://dev.mysql.com/doc/refman/5.5/en/fixed-point-types.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/binary-varbinary.html
http://dev.mysql.com/doc/refman/5.5/en/char.html
http://dev.mysql.com/doc/refman/5.5/en/char.html
http://dev.mysql.com/doc/refman/5.5/en/binary-varbinary.html
http://dev.mysql.com/doc/refman/5.5/en/fixed-point-types.html
http://dev.mysql.com/doc/refman/5.5/en/fixed-point-types.html
http://dev.mysql.com/doc/refman/5.5/en/integer-types.html
http://dev.mysql.com/doc/refman/5.5/en/integer-types.html
http://dev.mysql.com/doc/refman/5.5/en/set.html
http://dev.mysql.com/doc/refman/5.5/en/enum.html
http://dev.mysql.com/doc/refman/5.5/en/floating-point-types.html
http://dev.mysql.com/doc/refman/5.5/en/floating-point-types.html
http://dev.mysql.com/doc/refman/5.5/en/datetime.html
http://dev.mysql.com/doc/refman/5.5/en/time.html
http://dev.mysql.com/doc/refman/5.5/en/datetime.html
http://dev.mysql.com/doc/refman/5.5/en/datetime.html
http://dev.mysql.com/doc/refman/5.5/en/year.html
http://dev.mysql.com/doc/refman/5.5/en/create-table.html
http://dev.mysql.com/doc/refman/5.5/en/sql-mode.html#sqlmode_no_dir_in_create

Replication of Invoked Features

114

to ignore the DATA DIRECTORY and INDEX DIRECTORY table options when replicating CREATE TABLE
statements. The result is that MyISAM data and index files are created in the table's database directory.

For more information, see Server SQL Modes.

4.1.12 Replication of Invoked Features

Replication of invoked features such as user-defined functions (UDFs) and stored programs (stored
procedures and functions, triggers, and events) provides the following characteristics:

• The effects of the feature are always replicated.

• The following statements are replicated using statement-based replication:

• CREATE EVENT

• ALTER EVENT

• DROP EVENT

• CREATE PROCEDURE

• DROP PROCEDURE

• CREATE FUNCTION

• DROP FUNCTION

• CREATE TRIGGER

• DROP TRIGGER

However, the effects of features created, modified, or dropped using these statements are replicated
using row-based replication.

Note

Attempting to replicate invoked features using statement-based replication
produces the warning Statement is not safe to log in statement
format. For example, trying to replicate a UDF with statement-based replication
generates this warning because it currently cannot be determined by the MySQL
server whether the UDF is deterministic. If you are absolutely certain that
the invoked feature's effects are deterministic, you can safely disregard such
warnings.

• In the case of CREATE EVENT and ALTER EVENT:

• The status of the event is set to SLAVESIDE_DISABLED on the slave regardless of the state specified
(this does not apply to DROP EVENT).

• The master on which the event was created is identified on the slave by its server ID. The
ORIGINATOR column in INFORMATION_SCHEMA.EVENTS and the originator column in
mysql.event store this information. See The INFORMATION_SCHEMA EVENTS Table, and SHOW
EVENTS Syntax, for more information.

• The feature implementation resides on the slave in a renewable state so that if the master fails, the slave
can be used as the master without loss of event processing.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/create-table.html
http://dev.mysql.com/doc/refman/5.5/en/sql-mode.html
http://dev.mysql.com/doc/refman/5.5/en/create-event.html
http://dev.mysql.com/doc/refman/5.5/en/alter-event.html
http://dev.mysql.com/doc/refman/5.5/en/drop-event.html
http://dev.mysql.com/doc/refman/5.5/en/create-procedure.html
http://dev.mysql.com/doc/refman/5.5/en/drop-procedure.html
http://dev.mysql.com/doc/refman/5.5/en/create-function.html
http://dev.mysql.com/doc/refman/5.5/en/drop-function.html
http://dev.mysql.com/doc/refman/5.5/en/create-trigger.html
http://dev.mysql.com/doc/refman/5.5/en/drop-trigger.html
http://dev.mysql.com/doc/refman/5.5/en/create-event.html
http://dev.mysql.com/doc/refman/5.5/en/alter-event.html
http://dev.mysql.com/doc/refman/5.5/en/drop-event.html
http://dev.mysql.com/doc/refman/5.5/en/events-table.html
http://dev.mysql.com/doc/refman/5.5/en/events-table.html
http://dev.mysql.com/doc/refman/5.5/en/show-events.html
http://dev.mysql.com/doc/refman/5.5/en/show-events.html

Replication and Floating-Point Values

115

To determine whether there are any scheduled events on a MySQL server that were created on a different
server (that was acting as a replication master), query the INFORMATION_SCHEMA.EVENTS table in a
manner similar to what is shown here:

SELECT EVENT_SCHEMA, EVENT_NAME
 FROM INFORMATION_SCHEMA.EVENTS
 WHERE STATUS = 'SLAVESIDE_DISABLED';

Alternatively, you can use the SHOW EVENTS statement, like this:

SHOW EVENTS
 WHERE STATUS = 'SLAVESIDE_DISABLED';

When promoting a replication slave having such events to a replication master, you must enable each
event using ALTER EVENT event_name ENABLE, where event_name is the name of the event.

If more than one master was involved in creating events on this slave, and you wish to identify events that
were created only on a given master having the server ID master_id, modify the previous query on the
EVENTS table to include the ORIGINATOR column, as shown here:

SELECT EVENT_SCHEMA, EVENT_NAME, ORIGINATOR
 FROM INFORMATION_SCHEMA.EVENTS
 WHERE STATUS = 'SLAVESIDE_DISABLED'
 AND ORIGINATOR = 'master_id'

You can employ ORIGINATOR with the SHOW EVENTS statement in a similar fashion:

SHOW EVENTS
 WHERE STATUS = 'SLAVESIDE_DISABLED'
 AND ORIGINATOR = 'master_id'

Before enabling events that were replicated from the master, you should disable the MySQL Event
Scheduler on the slave (using a statement such as SET GLOBAL event_scheduler = OFF;), run any
necessary ALTER EVENT statements, restart the server, then re-enable the Event Scheduler on the slave
afterward (using a statement such as SET GLOBAL event_scheduler = ON;)-

If you later demote the new master back to being a replication slave, you must disable manually all events
enabled by the ALTER EVENT statements. You can do this by storing in a separate table the event names
from the SELECT statement shown previously, or using ALTER EVENT statements to rename the events
with a common prefix such as replicated_ to identify them.

If you rename the events, then when demoting this server back to being a replication slave, you can
identify the events by querying the EVENTS table, as shown here:

SELECT CONCAT(EVENT_SCHEMA, '.', EVENT_NAME) AS 'Db.Event'
 FROM INFORMATION_SCHEMA.EVENTS
 WHERE INSTR(EVENT_NAME, 'replicated_') = 1;

4.1.13 Replication and Floating-Point Values

With statement-based replication, values are converted from decimal to binary. Because conversions
between decimal and binary representations of them may be approximate, comparisons involving floating-
point values are inexact. This is true for operations that use floating-point values explicitly, or that use
values that are converted to floating-point implicitly. Comparisons of floating-point values might yield
different results on master and slave servers due to differences in computer architecture, the compiler used

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/events-table.html
http://dev.mysql.com/doc/refman/5.5/en/show-events.html
http://dev.mysql.com/doc/refman/5.5/en/alter-event.html
http://dev.mysql.com/doc/refman/5.5/en/events-table.html
http://dev.mysql.com/doc/refman/5.5/en/show-events.html
http://dev.mysql.com/doc/refman/5.5/en/alter-event.html
http://dev.mysql.com/doc/refman/5.5/en/alter-event.html
http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/alter-event.html
http://dev.mysql.com/doc/refman/5.5/en/events-table.html

Replication and FLUSH

116

to build MySQL, and so forth. See Type Conversion in Expression Evaluation, and Problems with Floating-
Point Values.

4.1.14 Replication and FLUSH

Some forms of the FLUSH statement are not logged because they could cause problems if replicated to
a slave: FLUSH LOGS, FLUSH MASTER, FLUSH SLAVE, and FLUSH TABLES WITH READ LOCK. For
a syntax example, see FLUSH Syntax. The FLUSH TABLES, ANALYZE TABLE, OPTIMIZE TABLE, and
REPAIR TABLE statements are written to the binary log and thus replicated to slaves. This is not normally
a problem because these statements do not modify table data.

However, this behavior can cause difficulties under certain circumstances. If you replicate the privilege
tables in the mysql database and update those tables directly without using GRANT, you must issue
a FLUSH PRIVILEGES on the slaves to put the new privileges into effect. In addition, if you use
FLUSH TABLES when renaming a MyISAM table that is part of a MERGE table, you must issue FLUSH
TABLES manually on the slaves. These statements are written to the binary log unless you specify
NO_WRITE_TO_BINLOG or its alias LOCAL.

4.1.15 Replication and System Functions

Certain functions do not replicate well under some conditions:

• The USER(), CURRENT_USER() (or CURRENT_USER), UUID(), VERSION(), and LOAD_FILE()
functions are replicated without change and thus do not work reliably on the slave unless row-based
replication is enabled. (See Section 2.2, “Replication Formats”.)

USER() and CURRENT_USER() are automatically replicated using row-based replication when using
MIXED mode, and generate a warning in STATEMENT mode. (Bug #28086) (See also Section 4.1.8,
“Replication of CURRENT_USER()”.)

Beginning with MySQL 5.5.1, VERSION() is also automatically replicated using row-based replication
when using MIXED mode, and generates a warning in STATEMENT mode. (Bug #47995) Beginning with
MySQL 5.5.2, this is also true with regard to the RAND() function. (Bug #49222)

• For NOW(), the binary log includes the timestamp. This means that the value as returned by the call to
this function on the master is replicated to the slave. This can lead to a possibly unexpected result when
replicating between MySQL servers in different time zones. Suppose that the master is located in New
York, the slave is located in Stockholm, and both servers are using local time. Suppose further that, on
the master, you create a table mytable, perform an INSERT statement on this table, and then select
from the table, as shown here:

mysql> CREATE TABLE mytable (mycol TEXT);
Query OK, 0 rows affected (0.06 sec)
mysql> INSERT INTO mytable VALUES (NOW());
Query OK, 1 row affected (0.00 sec)
mysql> SELECT * FROM mytable;
+---------------------+
| mycol |
+---------------------+
| 2009-09-01 12:00:00 |
+---------------------+
1 row in set (0.00 sec)

Local time in Stockholm is 6 hours later than in New York; so, if you issue SELECT NOW() on the slave
at that exact same instant, the value 2009-09-01 18:00:00 is returned. For this reason, if you select
from the slave's copy of mytable after the CREATE TABLE and INSERT statements just shown have

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/type-conversion.html
http://dev.mysql.com/doc/refman/5.5/en/problems-with-float.html
http://dev.mysql.com/doc/refman/5.5/en/problems-with-float.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/analyze-table.html
http://dev.mysql.com/doc/refman/5.5/en/optimize-table.html
http://dev.mysql.com/doc/refman/5.5/en/repair-table.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_user
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_current-user
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_current-user
http://dev.mysql.com/doc/refman/5.5/en/miscellaneous-functions.html#function_uuid
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_version
http://dev.mysql.com/doc/refman/5.5/en/string-functions.html#function_load-file
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_user
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_current-user
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_version
http://dev.mysql.com/doc/refman/5.5/en/mathematical-functions.html#function_rand
http://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html#function_now
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/create-table.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html

Replication and System Functions

117

been replicated, you might expect mycol to contain the value 2009-09-01 18:00:00. However, this
is not the case; when you select from the slave's copy of mytable, you obtain exactly the same result
as on the master:

mysql> SELECT * FROM mytable;
+---------------------+
| mycol |
+---------------------+
| 2009-09-01 12:00:00 |
+---------------------+
1 row in set (0.00 sec)

Unlike NOW(), the SYSDATE() function is not replication-safe because it is not affected by SET
TIMESTAMP statements in the binary log and is nondeterministic if statement-based logging is used. This
is not a problem if row-based logging is used.

An alternative is to use the --sysdate-is-now option to cause SYSDATE() to be an alias for NOW().
This must be done on the master and the slave to work correctly. In such cases, a warning is still issued
by this function, but can safely be ignored as long as --sysdate-is-now is used on both the master
and the slave.

Beginning with MySQL 5.5.1, SYSDATE() is automatically replicated using row-based replication when
using MIXED mode, and generates a warning in STATEMENT mode. (Bug #47995)

See also Section 4.1.34, “Replication and Time Zones”.

• The following restriction applies to statement-based replication only, not to row-based replication.
The GET_LOCK(), RELEASE_LOCK(), IS_FREE_LOCK(), and IS_USED_LOCK() functions that
handle user-level locks are replicated without the slave knowing the concurrency context on the master.
Therefore, these functions should not be used to insert into a master table because the content on
the slave would differ. For example, do not issue a statement such as INSERT INTO mytable
VALUES(GET_LOCK(...)).

Beginning with MySQL 5.5.1, these functions are automatically replicated using row-based replication
when using MIXED mode, and generate a warning in STATEMENT mode. (Bug #47995)

As a workaround for the preceding limitations when statement-based replication is in effect, you can use
the strategy of saving the problematic function result in a user variable and referring to the variable in a
later statement. For example, the following single-row INSERT is problematic due to the reference to the
UUID() function:

INSERT INTO t VALUES(UUID());

To work around the problem, do this instead:

SET @my_uuid = UUID();
INSERT INTO t VALUES(@my_uuid);

That sequence of statements replicates because the value of @my_uuid is stored in the binary log as a
user-variable event prior to the INSERT statement and is available for use in the INSERT.

The same idea applies to multiple-row inserts, but is more cumbersome to use. For a two-row insert, you
can do this:

SET @my_uuid1 = UUID(); @my_uuid2 = UUID();
INSERT INTO t VALUES(@my_uuid1),(@my_uuid2);

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html#function_now
http://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html#function_sysdate
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_sysdate-is-now
http://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html#function_sysdate
http://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html#function_now
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_sysdate-is-now
http://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html#function_sysdate
http://dev.mysql.com/doc/refman/5.5/en/miscellaneous-functions.html#function_get-lock
http://dev.mysql.com/doc/refman/5.5/en/miscellaneous-functions.html#function_release-lock
http://dev.mysql.com/doc/refman/5.5/en/miscellaneous-functions.html#function_is-free-lock
http://dev.mysql.com/doc/refman/5.5/en/miscellaneous-functions.html#function_is-used-lock
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/miscellaneous-functions.html#function_uuid
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html

Replication and LIMIT

118

However, if the number of rows is large or unknown, the workaround is difficult or impracticable. For
example, you cannot convert the following statement to one in which a given individual user variable is
associated with each row:

INSERT INTO t2 SELECT UUID(), * FROM t1;

Within a stored function, RAND() replicates correctly as long as it is invoked only once during the execution
of the function. (You can consider the function execution timestamp and random number seed as implicit
inputs that are identical on the master and slave.)

The FOUND_ROWS() and ROW_COUNT() functions are not replicated reliably using statement-based
replication. A workaround is to store the result of the function call in a user variable, and then use that in
the INSERT statement. For example, if you wish to store the result in a table named mytable, you might
normally do so like this:

SELECT SQL_CALC_FOUND_ROWS FROM mytable LIMIT 1;
INSERT INTO mytable VALUES(FOUND_ROWS());

However, if you are replicating mytable, you should use SELECT ... INTO, and then store the variable
in the table, like this:

SELECT SQL_CALC_FOUND_ROWS INTO @found_rows FROM mytable LIMIT 1;
INSERT INTO mytable VALUES(@found_rows);

In this way, the user variable is replicated as part of the context, and applied on the slave correctly.

These functions are automatically replicated using row-based replication when using MIXED mode, and
generate a warning in STATEMENT mode. (Bug #12092, Bug #30244)

Prior to MySQL 5.5.35, the value of LAST_INSERT_ID() was not replicated correctly if any filtering
options such as --replicate-ignore-db and --replicate-do-table were enabled on the slave.
(Bug #17234370, BUG# 69861)

4.1.16 Replication and LIMIT

Statement-based replication of LIMIT clauses in DELETE, UPDATE, and INSERT ... SELECT
statements is unsafe since the order of the rows affected is not defined. (Such statements can be
replicated correctly with statement-based replication only if they also contain an ORDER BY clause.) When
such a statement is encountered:

• When using STATEMENT mode, a warning that the statement is not safe for statement-based replication
is now issued.

When using STATEMENT mode, warnings are issued for DML statements containing LIMIT even when
they also have an ORDER BY clause (and so are made deterministic). This is a known issue. (Bug
#42851)

• When using MIXED mode, the statement is now automatically replicated using row-based mode.

4.1.17 Replication and LOAD DATA INFILE

In MySQL 5.5.6 and later, LOAD DATA INFILE is considered unsafe (see Section 2.2.3, “Determination of
Safe and Unsafe Statements in Binary Logging”).

4.1.18 Replication and the Slow Query Log

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/mathematical-functions.html#function_rand
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_found-rows
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_row-count
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/select-into.html
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_last-insert-id
http://dev.mysql.com/doc/refman/5.5/en/delete.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/insert-select.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html

Replication and Partitioning

119

In older versions of MySQL, replication slaves did not write replicated queries to the slow query log, even
if the same queries were written to the slow query log on the master. This is no longer an issue in MySQL
5.5. (Bug #23300)

4.1.19 Replication and Partitioning

Replication is supported between partitioned tables as long as they use the same partitioning scheme and
otherwise have the same structure except where an exception is specifically allowed (see Section 4.1.10,
“Replication with Differing Table Definitions on Master and Slave”).

Replication between tables having different partitioning is generally not supported. This because
statements (such as ALTER TABLE ... DROP PARTITION) acting directly on partitions in such cases
may produce different results on master and slave. In the case where a table is partitioned on the master
but not on the slave, any statements operating on partitions on the master's copy of the slave fail on the
slave. When the slave's copy of the table is partitioned but the master's copy is not, statements acting on
partitions cannot be run on the master without causing errors there.

Due to these dangers of causing replication to fail entirely (on account of failed statements) and of
inconsistencies (when the result of a partition-level SQL statement produces different results on master
and slave), we recommend that insure that the partitioning of any tables to be replicated from the master is
matched by the slave's versions of these tables.

4.1.20 Replication and REPAIR TABLE

When used on a corrupted or otherwise damaged table, it is possible for the REPAIR TABLE statement
to delete rows that cannot be recovered. However, any such modifications of table data performed by this
statement are not replicated, which can cause master and slave to lose synchronization. For this reason,
in the event that a table on the master becomes damaged and you use REPAIR TABLE to repair it, you
should first stop replication (if it is still running) before using REPAIR TABLE, then afterward compare the
master's and slave's copies of the table and be prepared to correct any discrepancies manually, before
restarting replication.

4.1.21 Replication and Master or Slave Shutdowns

It is safe to shut down a master server and restart it later. When a slave loses its connection to the master,
the slave tries to reconnect immediately and retries periodically if that fails. The default is to retry every 60
seconds. This may be changed with the CHANGE MASTER TO statement. A slave also is able to deal with
network connectivity outages. However, the slave notices the network outage only after receiving no data
from the master for slave_net_timeout seconds. If your outages are short, you may want to decrease
slave_net_timeout. See Server System Variables.

An unclean shutdown (for example, a crash) on the master side can result in the master binary log having
a final position less than the most recent position read by the slave, due to the master binary log file not
being flushed. This can cause the slave not to be able to replicate when the master comes back up. Setting
sync_binlog=1 in the master my.cnf file helps to minimize this problem because it causes the master
to flush its binary log more frequently.

Shutting down a slave cleanly is safe because it keeps track of where it left off. However, be careful that
the slave does not have temporary tables open; see Section 4.1.24, “Replication and Temporary Tables”.
Unclean shutdowns might produce problems, especially if the disk cache was not flushed to disk before the
problem occurred:

• For transactions, the slave commits and then updates relay-log.info. If a crash occurs between
these two operations, relay log processing will have proceeded further than the information file indicates
and the slave will re-execute the events from the last transaction in the relay log after it has been
restarted.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/alter-table-partition-operations.html
http://dev.mysql.com/doc/refman/5.5/en/repair-table.html
http://dev.mysql.com/doc/refman/5.5/en/repair-table.html
http://dev.mysql.com/doc/refman/5.5/en/repair-table.html
http://dev.mysql.com/doc/refman/5.5/en/change-master-to.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html

Replication and max_allowed_packet

120

• A similar problem can occur if the slave updates relay-log.info but the server host
crashes before the write has been flushed to disk. To minimize the chance of this occurring, set
sync_relay_log_info=1 in the slave my.cnf file. The default value of sync_relay_log_info is
0, which does not cause writes to be forced to disk; the server relies on the operating system to flush the
file from time to time.

The fault tolerance of your system for these types of problems is greatly increased if you have a good
uninterruptible power supply.

4.1.22 Replication and max_allowed_packet

max_allowed_packet sets an upper limit on the size of any single message between the MySQL server
and clients, including replication slaves. If you are replicating large column values (such as might be found
in TEXT or BLOB columns) and max_allowed_packet is too small on the master, the master fails with
an error, and the slave shuts down the I/O thread. If max_allowed_packet is too small on the slave, this
also causes the slave to stop the I/O thread.

Row-based replication currently sends all columns and column values for updated rows from the master
to the slave, including values of columns that were not actually changed by the update. This means that,
when you are replicating large column values using row-based replication, you must take care to set
max_allowed_packet large enough to accommodate the largest row in any table to be replicated, even
if you are replicating updates only, or you are inserting only relatively small values.

4.1.23 Replication and MEMORY Tables

When a master server shuts down and restarts, its MEMORY tables become empty. To replicate this effect to
slaves, the first time that the master uses a given MEMORY table after startup, it logs an event that notifies
slaves that the table must to be emptied by writing a DELETE statement for that table to the binary log.

When a slave server shuts down and restarts, its MEMORY tables become empty. This causes the slave to
be out of synchrony with the master and may lead to other failures or cause the slave to stop:

• Row-format updates and deletes received from the master may fail with Can't find record in
'memory_table'.

• Statements such as INSERT INTO ... SELECT FROM memory_table may insert a different set of
rows on the master and slave.

The safe way to restart a slave that is replicating MEMORY tables is to first drop or delete all rows from the
MEMORY tables on the master and wait until those changes have replicated to the slave. Then it is safe to
restart the slave.

An alternative restart method may apply in some cases. When binlog_format=ROW, you can prevent
the slave from stopping if you set slave_exec_mode=IDEMPOTENT before you start the slave again.
This allows the slave to continue to replicate, but its MEMORY tables will still be different from those on the
master. This can be okay if the application logic is such that the contents of MEMORY tables can be safely
lost (for example, if the MEMORY tables are used for caching). slave_exec_mode=IDEMPOTENT applies
globally to all tables, so it may hide other replication errors in non-MEMORY tables.

(The method just described is not applicable in NDB Cluster, where slave_exec_mode is always
IDEMPOTENT, and cannot be changed.)

The size of MEMORY tables is limited by the value of the max_heap_table_size system variable, which
is not replicated (see Section 4.1.38, “Replication and Variables”). A change in max_heap_table_size
takes effect for MEMORY tables that are created or updated using ALTER TABLE ... ENGINE = MEMORY
or TRUNCATE TABLE following the change, or for all MEMORY tables following a server restart. If you

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_allowed_packet
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_allowed_packet
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_allowed_packet
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_allowed_packet
http://dev.mysql.com/doc/refman/5.5/en/memory-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/memory-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/delete.html
http://dev.mysql.com/doc/refman/5.5/en/memory-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/insert-select.html
http://dev.mysql.com/doc/refman/5.5/en/memory-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/memory-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/memory-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/memory-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/memory-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/memory-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/memory-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_heap_table_size
http://dev.mysql.com/doc/refman/5.5/en/alter-table.html
http://dev.mysql.com/doc/refman/5.5/en/truncate-table.html
http://dev.mysql.com/doc/refman/5.5/en/memory-storage-engine.html

Replication and Temporary Tables

121

increase the value of this variable on the master without doing so on the slave, it becomes possible for a
table on the master to grow larger than its counterpart on the slave, leading to inserts that succeed on the
master but fail on the slave with Table is full errors. This is a known issue (Bug #48666). In such
cases, you must set the global value of max_heap_table_size on the slave as well as on the master,
then restart replication. It is also recommended that you restart both the master and slave MySQL servers,
to insure that the new value takes complete (global) effect on each of them.

See The MEMORY Storage Engine, for more information about MEMORY tables.

4.1.24 Replication and Temporary Tables

The discussion in the following paragraphs does not apply when binlog_format=ROW because, in that
case, temporary tables are not replicated; this means that there are never any temporary tables on the
slave to be lost in the event of an unplanned shutdown by the slave. The remainder of this section applies
only when using statement-based or mixed-format replication. Loss of replicated temporary tables on the
slave can be an issue, whenever binlog_format is STATEMENT or MIXED, for statements involving
temporary tables that can be logged safely using statement-based format. For more information about row-
based replication and temporary tables, see RBL, RBR, and temporary tables.

Safe slave shutdown when using temporary tables. Temporary tables are replicated except in the
case where you stop the slave server (not just the slave threads) and you have replicated temporary
tables that are open for use in updates that have not yet been executed on the slave. If you stop the slave
server, the temporary tables needed by those updates are no longer available when the slave is restarted.
To avoid this problem, do not shut down the slave while it has temporary tables open. Instead, use the
following procedure:

1. Issue a STOP SLAVE SQL_THREAD statement.

2. Use SHOW STATUS to check the value of the Slave_open_temp_tables variable.

3. If the value is not 0, restart the slave SQL thread with START SLAVE SQL_THREAD and repeat the
procedure later.

4. When the value is 0, issue a mysqladmin shutdown command to stop the slave.

Temporary tables and replication options. By default, all temporary tables are replicated; this
happens whether or not there are any matching --replicate-do-db, --replicate-do-table, or --
replicate-wild-do-table options in effect. However, the --replicate-ignore-table and --
replicate-wild-ignore-table options are honored for temporary tables.

A recommended practice when using statement-based or mixed-format replication is to designate a
prefix for exclusive use in naming temporary tables that you do not want replicated, then employ a --
replicate-wild-ignore-table option to match that prefix. For example, you might give all such
tables names beginning with norep (such as norepmytable, norepyourtable, and so on), then use
--replicate-wild-ignore-table=norep% to prevent them from being replicated.

4.1.25 Replication of the mysql System Database

Data modification statements made to tables in the mysql database are replicated according to the value
of binlog_format; if this value is MIXED, these statements are replicated using row-based format.
However, statements that would normally update this information indirectly—such GRANT, REVOKE, and
statements manipulating triggers, stored routines, and views—are replicated to slaves using statement-
based replication.

4.1.26 Replication and the Query Optimizer

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_heap_table_size
http://dev.mysql.com/doc/refman/5.5/en/memory-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/memory-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/show-status.html
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Slave_open_temp_tables
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/revoke.html

Replication and Reserved Words

122

It is possible for the data on the master and slave to become different if a statement is written in such a
way that the data modification is nondeterministic; that is, left up the query optimizer. (In general, this is
not a good practice, even outside of replication.) Examples of nondeterministic statements include DELETE
or UPDATE statements that use LIMIT with no ORDER BY clause; see Section 4.1.16, “Replication and
LIMIT”, for a detailed discussion of these.

4.1.27 Replication and Reserved Words

You can encounter problems when you attempt to replicate from an older master to a newer slave and you
make use of identifiers on the master that are reserved words in the newer MySQL version running on the
slave. An example of this is using a table column named range on a 5.0 master that is replicating to a 5.1
or higher slave because RANGE is a reserved word beginning in MySQL 5.1. Replication can fail in such
cases with Error 1064 You have an error in your SQL syntax..., even if a database or table
named using the reserved word or a table having a column named using the reserved word is excluded
from replication. This is due to the fact that each SQL event must be parsed by the slave prior to execution,
so that the slave knows which database object or objects would be affected; only after the event is parsed
can the slave apply any filtering rules defined by --replicate-do-db, --replicate-do-table, --
replicate-ignore-db, and --replicate-ignore-table.

To work around the problem of database, table, or column names on the master which would be regarded
as reserved words by the slave, do one of the following:

• Use one or more ALTER TABLE statements on the master to change the names of any database objects
where these names would be considered reserved words on the slave, and change any SQL statements
that use the old names to use the new names instead.

• In any SQL statements using these database object names, write the names as quoted identifiers using
backtick characters (`).

For listings of reserved words by MySQL version, see Reserved Words, in the MySQL Server Version
Reference. For identifier quoting rules, see Schema Object Names.

4.1.28 SET PASSWORD and Row-Based Replication

Row-based replication of SET PASSWORD statements from a MySQL 5.1 master to a MySQL 5.5 slave did
not work correctly prior to MySQL 5.1.53 on the master and MySQL 5.5.7 on the slave (see Bug #57098,
Bug #57357).

4.1.29 Slave Errors During Replication

If a statement produces the same error (identical error code) on both the master and the slave, the error is
logged, but replication continues.

If a statement produces different errors on the master and the slave, the slave SQL thread terminates, and
the slave writes a message to its error log and waits for the database administrator to decide what to do
about the error. This includes the case that a statement produces an error on the master or the slave, but
not both. To address the issue, connect to the slave manually and determine the cause of the problem.
SHOW SLAVE STATUS is useful for this. Then fix the problem and run START SLAVE. For example, you
might need to create a nonexistent table before you can start the slave again.

If this error code validation behavior is not desirable, some or all errors can be masked out (ignored) with
the --slave-skip-errors option.

For nontransactional storage engines such as MyISAM, it is possible to have a statement that only partially
updates a table and returns an error code. This can happen, for example, on a multiple-row insert that has

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/delete.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/alter-table.html
http://dev.mysql.com/doc/mysqld-version-reference/en/mysqld-version-reference-optvar.html
http://dev.mysql.com/doc/refman/5.5/en/identifiers.html
http://dev.mysql.com/doc/refman/5.5/en/set-password.html
http://dev.mysql.com/doc/refman/5.5/en/show-slave-status.html
http://dev.mysql.com/doc/refman/5.5/en/start-slave.html

Replication of Server-Side Help Tables

123

one row violating a key constraint, or if a long update statement is killed after updating some of the rows. If
that happens on the master, the slave expects execution of the statement to result in the same error code.
If it does not, the slave SQL thread stops as described previously.

If you are replicating between tables that use different storage engines on the master and slave, keep in
mind that the same statement might produce a different error when run against one version of the table,
but not the other, or might cause an error for one version of the table, but not the other. For example, since
MyISAM ignores foreign key constraints, an INSERT or UPDATE statement accessing an InnoDB table on
the master might cause a foreign key violation but the same statement performed on a MyISAM version of
the same table on the slave would produce no such error, causing replication to stop.

4.1.30 Replication of Server-Side Help Tables

The server maintains tables in the mysql database that store information for the HELP statement (see
HELP Syntax. These tables can be loaded manually as described at Server-Side Help.

Help table content is derived from the MySQL Reference Manual. There are versions of the manual
specific to each MySQL release series, so help content is specific to each series as well. Normally, you
load a version of help content that matches the server version. This has implications for replication. For
example, you would load MySQL 5.5 help content into a MySQL 5.5 master server, but not necessarily
replicate that content to a MySQL 5.6 slave server for which 5.6 help content is more appropriate.

This section describes how to manage help table content upgrades when your servers participate in
replication. Server versions are one factor in this task. Another is that help table structure may differ
between the master and the slave.

Assume that help content is stored in a file named fill_help_tables.sql. In MySQL distributions, this
file is located under the share or share/mysql directory, and the most recent version is always available
for download from http://dev.mysql.com/doc/index-other.html.

To upgrade help tables, using the following procedure. Connection parameters are not shown for the
mysql commands discussed here; in all cases, connect to the server using an account such as root that
has privileges for modifying tables in the mysql database.

1. Upgrade your servers by running mysql_upgrade, first on the slaves and then on the master. This is
the usual principle of upgrading slaves first.

2. Decide whether you want to replicate help table content from the master to its slaves. If not, load
the content on the master and each slave individually. Otherwise, check for and resolve any
incompatibilities between help table structure on the master and its slaves, then load the content into
the master and let it replicate to the slaves.

More detail about these two methods of loading help table content follows.

Loading Help Table Content Without Replication to Slaves

To load help table content without replication, run this command on the master and each slave individually,
using a fill_help_tables.sql file containing content appropriate to the server version (enter the
command on one line):

mysql --init-command="SET sql_log_bin=0"
 mysql < fill_help_tables.sql

Use the --init-command option on each server, including the slaves, in case a slave also acts as a
master to other slaves in your replication topology. The SET statement suppresses binary logging. After the
command has been run on each server to be upgraded, you are done.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/help.html
http://dev.mysql.com/doc/refman/5.5/en/help.html
http://dev.mysql.com/doc/refman/5.5/en/server-side-help-support.html
http://dev.mysql.com/doc/index-other.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-command-options.html#option_mysql_init-command

Replication of Server-Side Help Tables

124

Loading Help Table Content With Replication to Slaves

If you do want to replicate help table content, check for help table incompatibilities between your
master and its slaves. The url column in the help_category and help_topic tables was originally
CHAR(128), but is TEXT in newer MySQL versions to accommodate longer URLs. To check help table
structure, use this statement:

SELECT TABLE_NAME, COLUMN_NAME, COLUMN_TYPE
FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_SCHEMA = 'mysql'
AND COLUMN_NAME = 'url';

For tables with the old structure, the statement produces this result:

+---------------+-------------+-------------+
| TABLE_NAME | COLUMN_NAME | COLUMN_TYPE |
+---------------+-------------+-------------+
| help_category | url | char(128) |
| help_topic | url | char(128) |
+---------------+-------------+-------------+

For tables with the new structure, the statement produces this result:

+---------------+-------------+-------------+
| TABLE_NAME | COLUMN_NAME | COLUMN_TYPE |
+---------------+-------------+-------------+
| help_category | url | text |
| help_topic | url | text |
+---------------+-------------+-------------+

If the master and slave both have the old structure or both have the new structure, they are compatible and
you can replicate help table content by executing this command on the master:

mysql mysql < fill_help_tables.sql

The table content will load into the master, then replicate to the slaves.

If the master and slave have incompatible help tables (one server has the old structure and the other
has the new), you have a choice between not replicating help table content after all, or making the table
structures compatible so that you can replicate the content.

• If you decide not to replicate the content after all, upgrade the master and slaves individually using
mysql with the --init-command option, as described previously.

• If instead you decide to make the table structures compatible, upgrade the tables on the server that
has the old structure. Suppose that your master server has the old table structure. Upgrade its tables to
the new structure manually by executing these statements (binary logging is disabled here to prevent
replication of the changes to the slaves, which already have the new structure):

SET sql_log_bin=0;
ALTER TABLE mysql.help_category ALTER COLUMN url TEXT;
ALTER TABLE mysql.help_topic ALTER COLUMN url TEXT;

Then run this command on the master:

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/mysql-command-options.html#option_mysql_init-command

Replication and Server SQL Mode

125

mysql mysql < fill_help_tables.sql

The table content will load into the master, then replicate to the slaves.

4.1.31 Replication and Server SQL Mode

Using different server SQL mode settings on the master and the slave may cause the same INSERT
statements to be handled differently on the master and the slave, leading the master and slave to diverge.
For best results, you should always use the same server SQL mode on the master and on the slave. This
advice applies whether you are using statement-based or row-based replication.

If you are replicating partitioned tables, using different SQL modes on the master and the slave is likely to
cause issues. At a minimum, this is likely to cause the distribution of data among partitions to be different
in the master's and slave's copies of a given table. It may also cause inserts into partitioned tables that
succeed on the master to fail on the slave.

For more information, see Server SQL Modes.

4.1.32 Replication Retries and Timeouts

The global system variable slave_transaction_retries affects replication as follows:
If the slave SQL thread fails to execute a transaction because of an InnoDB deadlock or
because it exceeded the InnoDB innodb_lock_wait_timeout value, or the NDBCLUSTER
TransactionDeadlockDetectionTimeout or TransactionInactiveTimeout value, the slave
automatically retries the transaction slave_transaction_retries times before stopping with an error.
The default value is 10. The total retry count can be seen in the output of SHOW STATUS; see Server
Status Variables.

4.1.33 Replication and TIMESTAMP

Older versions of MySQL (prior to 4.1) differed significantly in several ways in their handling of the
TIMESTAMP data type from what is supported in MySQL versions 5.5 and newer; these include syntax
extensions which are deprecated in MySQL 5.1, and that no longer supported in MySQL 5.5. This can
cause problems (including replication failures) when replicating between MySQL Server versions, if you are
using columns that are defined using the old TIMESTAMP(N) syntax. See Changes Affecting Upgrades to
MySQL 5.5, for more information about the differences, how they can impact MySQL replication, and what
you can do if you encounter such problems.

4.1.34 Replication and Time Zones

The same system time zone should be set for both master and slave. Otherwise, statements depending
on the local time on the master are not replicated properly, such as statements that use the NOW() or
FROM_UNIXTIME() functions. You can set the time zone in which MySQL server runs by using the --
timezone=timezone_name option of the mysqld_safe script or by setting the TZ environment variable.
See also Section 4.1.15, “Replication and System Functions”.

4.1.35 Replication and Transactions

Mixing transactional and nontransactional statements within the same transaction. In general,
you should avoid transactions that update both transactional and nontransactional tables in a replication
environment. You should also avoid using any statement that accesses both transactional (or temporary)
and nontransactional tables and writes to any of them.

As of MySQL 5.5.2, the server uses these rules for binary logging:

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/sql-mode.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-parameters.html#sysvar_innodb_lock_wait_timeout
http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.5/en/show-status.html
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html
http://dev.mysql.com/doc/refman/5.5/en/datetime.html
http://dev.mysql.com/doc/refman/5.5/en/datetime.html
http://dev.mysql.com/doc/refman/5.5/en/upgrading-from-previous-series.html
http://dev.mysql.com/doc/refman/5.5/en/upgrading-from-previous-series.html
http://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html#function_now
http://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html#function_from-unixtime
http://dev.mysql.com/doc/refman/5.5/en/mysqld-safe.html#option_mysqld_safe_timezone
http://dev.mysql.com/doc/refman/5.5/en/mysqld-safe.html#option_mysqld_safe_timezone

Replication and Transactions

126

• If the initial statements in a transaction are nontransactional, they are written to the binary log
immediately. The remaining statements in the transaction are cached and not written to the binary log
until the transaction is committed. (If the transaction is rolled back, the cached statements are written to
the binary log only if they make nontransactional changes that cannot be rolled back. Otherwise, they
are discarded.)

• For statement-based logging, logging of nontransactional statements is affected by the
binlog_direct_non_transactional_updates system variable. When this variable is OFF
(the default), logging is as just described. When this variable is ON, logging occurs immediately for
nontransactional statements occurring anywhere in the transaction (not just initial nontransactional
statements). Other statements are kept in the transaction cache and logged when the transaction
commits. binlog_direct_non_transactional_updates has no effect for row-format or mixed-
format binary logging.

Transactional, nontransactional, and mixed statements.
To apply those rules, the server considers a statement nontransactional if it changes only nontransactional
tables, and transactional if it changes only transactional tables. Prior to MySQL 5.5.6, a statement that
changed both nontransactional and transactional tables was considered “mixed”. Beginning with MySQL
5.5.6, a statement that references both nontransactional and transactional tables and updates any of the
tables involved, is considered a mixed statement. Mixed statements, like transactional statements, are
cached and logged when the transaction commits.

Beginning with MySQL 5.5.6, a mixed statement that updates a transactional table is considered unsafe if
the statement also performs either of the following actions:

• Updates or reads a transactional table

• Reads a nontransactional table and the transaction isolation level is less than REPEATABLE_READ

Also beginning with MySQL 5.5.6, any mixed statement following the update of a transactional table within
a transaction is considered unsafe if it performs either of the following actions:

• Updates any table and reads from any temporary table

• Updates a nontransactional table and binlog_direct_non_trans_update is OFF

For more information, see Section 2.2.3, “Determination of Safe and Unsafe Statements in Binary
Logging”.

Note

A mixed statement is unrelated to mixed binary logging format.

Before MySQL 5.5.2, the rules for binary logging are similar to those just described, except that there is
no binlog_direct_non_transactional_updates system variable to affect logging of transactional
statements. Thus, the server immediately logs only the initial nontransactional statements in a transaction
and caches the rest until commit time.

In situations where transactions mix updates to transactional and nontransactional tables, the order of
statements in the binary log is correct, and all needed statements are written to the binary log even in
case of a ROLLBACK. However, when a second connection updates the nontransactional table before
the first connection transaction is complete, statements can be logged out of order because the second
connection update is written immediately after it is performed, regardless of the state of the transaction
being performed by the first connection.

Using different storage engines on master and slave. It is possible to replicate transactional tables
on the master using nontransactional tables on the slave. For example, you can replicate an InnoDB

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/commit.html

Replication and Triggers

127

master table as a MyISAM slave table. However, if you do this, there are problems if the slave is stopped in
the middle of a BEGIN ... COMMIT block because the slave restarts at the beginning of the BEGIN block.

Beginning with MySQL 5.5.0, it is also safe to replicate transactions from MyISAM tables on the master to
transactional tables—such as tables that use the InnoDB storage engine—on the slave. In such cases
(beginning with MySQL 5.5.0), an AUTOCOMMIT=1 statement issued on the master is replicated, thus
enforcing AUTOCOMMIT mode on the slave.

When the storage engine type of the slave is nontransactional, transactions on the master that mix updates
of transactional and nontransactional tables should be avoided because they can cause inconsistency
of the data between the master transactional table and the slave nontransactional table. That is, such
transactions can lead to master storage engine-specific behavior with the possible effect of replication
going out of synchrony. MySQL does not issue a warning about this currently, so extra care should be
taken when replicating transactional tables from the master to nontransactional tables on the slaves.

Changing the binary logging format within transactions. Beginning with MySQL 5.5.3, the
binlog_format system variable is read-only as long as a transaction is in progress. (Bug #47863)

Every transaction (including autocommit transactions) is recorded in the binary log as though it starts with
a BEGIN statement, and ends with either a COMMIT or a ROLLBACK statement. In MySQL 5.5, this true is
even for statements affecting tables that use a nontransactional storage engine (such as MyISAM).

4.1.36 Replication and Triggers

With statement-based replication, triggers executed on the master also execute on the slave. With row-
based replication, triggers executed on the master do not execute on the slave. Instead, the row changes
on the master resulting from trigger execution are replicated and applied on the slave.

This behavior is by design. If under row-based replication the slave applied the triggers as well as the row
changes caused by them, the changes would in effect be applied twice on the slave, leading to different
data on the master and the slave.

If you want triggers to execute on both the master and the slave—perhaps because you have different
triggers on the master and slave—you must use statement-based replication. However, to enable slave-
side triggers, it is not necessary to use statement-based replication exclusively. It is sufficient to switch to
statement-based replication only for those statements where you want this effect, and to use row-based
replication the rest of the time.

A statement invoking a trigger (or function) that causes an update to an AUTO_INCREMENT column is not
replicated correctly using statement-based replication. MySQL 5.5 marks such statements as unsafe. (Bug
#45677)

4.1.37 Replication and TRUNCATE TABLE

TRUNCATE TABLE is normally regarded as a DML statement, and so would be expected to be logged
and replicated using row-based format when the binary logging mode is ROW or MIXED. However this
caused issues when logging or replicating, in STATEMENT or MIXED mode, tables that used transactional
storage engines such as InnoDB when the transaction isolation level was READ COMMITTED or READ
UNCOMMITTED, which precludes statement-based logging.

TRUNCATE TABLE is treated for purposes of logging and replication as DDL rather than DML so that it can
be logged and replicated as a statement. However, the effects of the statement as applicable to InnoDB
and other transactional tables on replication slaves still follow the rules described in TRUNCATE TABLE
Syntax governing such tables. (Bug #36763)

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/commit.html
http://dev.mysql.com/doc/refman/5.5/en/commit.html
http://dev.mysql.com/doc/refman/5.5/en/commit.html
http://dev.mysql.com/doc/refman/5.5/en/myisam-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_autocommit
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_autocommit
http://dev.mysql.com/doc/refman/5.5/en/commit.html
http://dev.mysql.com/doc/refman/5.5/en/commit.html
http://dev.mysql.com/doc/refman/5.5/en/commit.html
http://dev.mysql.com/doc/refman/5.5/en/myisam-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/truncate-table.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/truncate-table.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/truncate-table.html
http://dev.mysql.com/doc/refman/5.5/en/truncate-table.html

Replication and Variables

128

4.1.38 Replication and Variables

System variables are not replicated correctly when using STATEMENT mode, except for the following
variables when they are used with session scope:

• auto_increment_increment

• auto_increment_offset

• character_set_client

• character_set_connection

• character_set_database

• character_set_server

• collation_connection

• collation_database

• collation_server

• foreign_key_checks

• identity

• last_insert_id

• lc_time_names

• pseudo_thread_id

• sql_auto_is_null

• time_zone

• timestamp

• unique_checks

When MIXED mode is used, the variables in the preceding list, when used with session scope, cause a
switch from statement-based to row-based logging. See Mixed Binary Logging Format.

sql_mode is also replicated except for the NO_DIR_IN_CREATE mode; the slave always preserves
its own value for NO_DIR_IN_CREATE, regardless of changes to it on the master. This is true for all
replication formats.

However, when mysqlbinlog parses a SET @@sql_mode = mode statement, the full mode value,
including NO_DIR_IN_CREATE, is passed to the receiving server. For this reason, replication of such a
statement may not be safe when STATEMENT mode is in use.

The default_storage_engine and storage_engine system variables are not replicated, regardless
of the logging mode; this is intended to facilitate replication between different storage engines.

The read_only system variable is not replicated. In addition, the enabling this variable has different
effects with regard to temporary tables, table locking, and the SET PASSWORD statement in different
MySQL versions.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_character_set_client
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_character_set_connection
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_character_set_database
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_character_set_server
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_collation_connection
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_collation_database
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_collation_server
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_foreign_key_checks
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_identity
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_last_insert_id
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_lc_time_names
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_pseudo_thread_id
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_sql_auto_is_null
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_time_zone
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_timestamp
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_unique_checks
http://dev.mysql.com/doc/refman/5.5/en/binary-log-mixed.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_sql_mode
http://dev.mysql.com/doc/refman/5.5/en/sql-mode.html#sqlmode_no_dir_in_create
http://dev.mysql.com/doc/refman/5.5/en/sql-mode.html#sqlmode_no_dir_in_create
http://dev.mysql.com/doc/refman/5.5/en/sql-mode.html#sqlmode_no_dir_in_create
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_default_storage_engine
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_storage_engine
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_read_only
http://dev.mysql.com/doc/refman/5.5/en/set-password.html

Replication and Views

129

The max_heap_table_size system variable is not replicated. Increasing the value of this variable on
the master without doing so on the slave can lead eventually to Table is full errors on the slave when
trying to execute INSERT statements on a MEMORY table on the master that is thus permitted to grow larger
than its counterpart on the slave. For more information, see Section 4.1.23, “Replication and MEMORY
Tables”.

In statement-based replication, session variables are not replicated properly when used in statements that
update tables. For example, the following sequence of statements will not insert the same data on the
master and the slave:

SET max_join_size=1000;
INSERT INTO mytable VALUES(@@max_join_size);

This does not apply to the common sequence:

SET time_zone=...;
INSERT INTO mytable VALUES(CONVERT_TZ(..., ..., @@time_zone));

Replication of session variables is not a problem when row-based replication is being used, in which case,
session variables are always replicated safely. See Section 2.2, “Replication Formats”.

In MySQL 5.5, the following session variables are written to the binary log and honored by the replication
slave when parsing the binary log, regardless of the logging format:

• sql_mode

• foreign_key_checks

• unique_checks

• character_set_client

• collation_connection

• collation_database

• collation_server

• sql_auto_is_null

Important

Even though session variables relating to character sets and collations are written
to the binary log, replication between different character sets is not supported.

It is strongly recommended that you always use the same setting for the lower_case_table_names
system variable on both master and slave. In particular, when a case-sensitive file system is used, setting
this variable to 1 on the slave, but to a different value on the master, can cause two types of problems:
Names of databases are not converted to lowercase; in addition, when using row-based replication names
of tables are also not converted. Either of these problems can cause replication to fail. This is a known
issue, which is fixed in MySQL 5.6.

4.1.39 Replication and Views

Views are always replicated to slaves. Views are filtered by their own name, not by the tables they refer to.
This means that a view can be replicated to the slave even if the view contains a table that would normally

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_heap_table_size
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/memory-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_sql_mode
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_foreign_key_checks
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_unique_checks
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_character_set_client
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_collation_connection
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_collation_database
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_collation_server
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_sql_auto_is_null
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_lower_case_table_names

Replication Compatibility Between MySQL Versions

130

be filtered out by replication-ignore-table rules. Care should therefore be taken to ensure that
views do not replicate table data that would normally be filtered for security reasons.

Replication from a table to a samed-named view is supported using statement-based logging, but not when
using row-based logging. In MySQL 5.5.31 and later, trying to do so when row-based logging is in effect
causes an error. (Bug #11752707, Bug #43975)

4.2 Replication Compatibility Between MySQL Versions

MySQL supports replication from one release series to the next higher release series. For example, you
can replicate from a master running MySQL 5.1 to a slave running MySQL 5.5, from a master running
MySQL 5.5 to a slave running MySQL 5.6, and so on.

However, one may encounter difficulties when replicating from an older master to a newer slave if the
master uses statements or relies on behavior no longer supported in the version of MySQL used on
the slave. For example, in MySQL 5.5, CREATE TABLE ... SELECT statements are permitted to
change tables other than the one being created, but are no longer allowed to do so in MySQL 5.6 (see
Section 4.1.6, “Replication of CREATE TABLE ... SELECT Statements”).

The use of more than two MySQL Server versions is not supported in replication setups involving multiple
masters, regardless of the number of master or slave MySQL servers. This restriction applies not only
to release series, but to version numbers within the same release series as well. For example, if you are
using a chained or circular replication setup, you cannot use MySQL 5.5.1, MySQL 5.5.2, and MySQL
5.5.4 concurrently, although you could use any two of these releases together.

Important

It is strongly recommended to use the most recent release available within a given
MySQL release series because replication (and other) capabilities are continually
being improved. It is also recommended to upgrade masters and slaves that use
early releases of a release series of MySQL to GA (production) releases when the
latter become available for that release series.

Replication from newer masters to older slaves may be possible, but is generally not supported. This is due
to a number of factors:

• Binary log format changes. The binary log format can change between major releases. While
we attempt to maintain backward compatibility, this is not always possible. For example, the binary
log format implemented in MySQL 5.0 changed considerably from that used in previous versions,
especially with regard to handling of character sets, LOAD DATA INFILE, and time zones. This means
that replication from a MySQL 5.0 (or later) master to a MySQL 4.1 (or earlier) slave is generally not
supported.

This also has significant implications for upgrading replication servers; see Section 4.3, “Upgrading a
Replication Setup”, for more information.

• Use of row-based replication. Row-based replication was implemented in MySQL 5.1.5, so you
cannot replicate using row-based replication from any MySQL 5.5 or later master to a slave older than
MySQL 5.1.5.

For more information about row-based replication, see Section 2.2, “Replication Formats”.

• SQL incompatibilities. You cannot replicate from a newer master to an older slave using statement-
based replication if the statements to be replicated use SQL features available on the master but not on
the slave.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/create-table-select.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html

Upgrading a Replication Setup

131

However, if both the master and the slave support row-based replication, and there are no data definition
statements to be replicated that depend on SQL features found on the master but not on the slave, you
can use row-based replication to replicate the effects of data modification statements even if the DDL run
on the master is not supported on the slave.

For more information on potential replication issues, see Section 4.1, “Replication Features and Issues”.

4.3 Upgrading a Replication Setup
When you upgrade servers that participate in a replication setup, the procedure for upgrading depends on
the current server versions and the version to which you are upgrading. This section provides information
about how upgrading affects replication. For general information about upgrading MySQL, see Upgrading
MySQL

When you upgrade a master to 5.5 from an earlier MySQL release series, you should first ensure that all
the slaves of this master are using the same 5.5.x release. If this is not the case, you should first upgrade
the slaves. To upgrade each slave, shut it down, upgrade it to the appropriate 5.5.x version, restart it,
and restart replication. The 5.5 slave is able to read the old relay logs written prior to the upgrade and to
execute the statements they contain. Relay logs created by the slave after the upgrade are in 5.5 format.

After the slaves have been upgraded, shut down the master, upgrade it to the same 5.5.x release as the
slaves, and restart it. The 5.5 master is able to read the old binary logs written prior to the upgrade and
to send them to the 5.5 slaves. The slaves recognize the old format and handle it properly. Binary logs
created by the master subsequent to the upgrade are in 5.5 format. These too are recognized by the 5.5
slaves.

In other words, when upgrading to MySQL 5.5, the slaves must be MySQL 5.5 before you can upgrade the
master to 5.5. Note that downgrading from 5.5 to older versions does not work so simply: You must ensure
that any 5.5 binary log or relay log has been fully processed, so that you can remove it before proceeding
with the downgrade.

Some upgrades may require that you drop and re-create database objects when you move from one
MySQL series to the next. For example, collation changes might require that table indexes be rebuilt. Such
operations, if necessary, are detailed at Changes Affecting Upgrades to MySQL 5.5. It is safest to perform
these operations separately on the slaves and the master, and to disable replication of these operations
from the master to the slave. To achieve this, use the following procedure:

1. Stop all the slaves and upgrade them. Restart them with the --skip-slave-start option so that
they do not connect to the master. Perform any table repair or rebuilding operations needed to re-
create database objects, such as use of REPAIR TABLE or ALTER TABLE, or dumping and reloading
tables or triggers.

2. Disable the binary log on the master. To do this without restarting the master, execute a SET
sql_log_bin = 0 statement. Alternatively, stop the master and restart it without the --log-bin
option. If you restart the master, you might also want to disallow client connections. For example, if all
clients connect using TCP/IP, use the --skip-networking option when you restart the master.

3. With the binary log disabled, perform any table repair or rebuilding operations needed to re-create
database objects. The binary log must be disabled during this step to prevent these operations from
being logged and sent to the slaves later.

4. Re-enable the binary log on the master. If you set sql_log_bin to 0 earlier, execute a SET
sql_log_bin = 1 statement. If you restarted the master to disable the binary log, restart it with --
log-bin, and without --skip-networking so that clients and slaves can connect.

5. Restart the slaves, this time without the --skip-slave-start option.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/upgrading.html
http://dev.mysql.com/doc/refman/5.5/en/upgrading.html
http://dev.mysql.com/doc/refman/5.5/en/upgrading-from-previous-series.html
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_skip-networking
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_sql_log_bin
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_skip-networking

Troubleshooting Replication

132

4.4 Troubleshooting Replication

If you have followed the instructions but your replication setup is not working, the first thing to do is check
the error log for messages. Many users have lost time by not doing this soon enough after encountering
problems.

If you cannot tell from the error log what the problem was, try the following techniques:

• Verify that the master has binary logging enabled by issuing a SHOW MASTER STATUS statement. If
logging is enabled, Position is nonzero. If binary logging is not enabled, verify that you are running the
master with the --log-bin option.

• Verify that the master and slave both were started with the --server-id option and that the ID value is
unique on each server.

• Verify that the slave is running. Use SHOW SLAVE STATUS to check whether the Slave_IO_Running
and Slave_SQL_Running values are both Yes. If not, verify the options that were used when starting
the slave server. For example, --skip-slave-start prevents the slave threads from starting until you
issue a START SLAVE statement.

• If the slave is running, check whether it established a connection to the master. Use SHOW
PROCESSLIST, find the I/O and SQL threads and check their State column to see what they display.
See Section 5.1, “Replication Implementation Details”. If the I/O thread state says Connecting to
master, check the following:

• Verify the privileges for the user being used for replication on the master.

• Check that the host name of the master is correct and that you are using the correct port to connect
to the master. The port used for replication is the same as used for client network communication (the
default is 3306). For the host name, ensure that the name resolves to the correct IP address.

• Check that networking has not been disabled on the master or slave. Look for the skip-networking
option in the configuration file. If present, comment it out or remove it.

• If the master has a firewall or IP filtering configuration, ensure that the network port being used for
MySQL is not being filtered.

• Check that you can reach the master by using ping or traceroute/tracert to reach the host.

• If the slave was running previously but has stopped, the reason usually is that some statement that
succeeded on the master failed on the slave. This should never happen if you have taken a proper
snapshot of the master, and never modified the data on the slave outside of the slave thread. If the
slave stops unexpectedly, it is a bug or you have encountered one of the known replication limitations
described in Section 4.1, “Replication Features and Issues”. If it is a bug, see Section 4.5, “How to
Report Replication Bugs or Problems”, for instructions on how to report it.

• If a statement that succeeded on the master refuses to run on the slave, try the following procedure if it
is not feasible to do a full database resynchronization by deleting the slave's databases and copying a
new snapshot from the master:

1. Determine whether the affected table on the slave is different from the master table. Try to
understand how this happened. Then make the slave's table identical to the master's and run START
SLAVE.

2. If the preceding step does not work or does not apply, try to understand whether it would be safe to
make the update manually (if needed) and then ignore the next statement from the master.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/show-master-status.html
http://dev.mysql.com/doc/refman/5.5/en/show-slave-status.html
http://dev.mysql.com/doc/refman/5.5/en/start-slave.html
http://dev.mysql.com/doc/refman/5.5/en/show-processlist.html
http://dev.mysql.com/doc/refman/5.5/en/show-processlist.html
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_skip-networking
http://dev.mysql.com/doc/refman/5.5/en/start-slave.html
http://dev.mysql.com/doc/refman/5.5/en/start-slave.html

How to Report Replication Bugs or Problems

133

3. If you decide that the slave can skip the next statement from the master, issue the following
statements:

mysql> SET GLOBAL sql_slave_skip_counter = N;
mysql> START SLAVE;

The value of N should be 1 if the next statement from the master does not use AUTO_INCREMENT
or LAST_INSERT_ID(). Otherwise, the value should be 2. The reason for using a value of 2 for
statements that use AUTO_INCREMENT or LAST_INSERT_ID() is that they take two events in the
binary log of the master.

See also SET GLOBAL sql_slave_skip_counter Syntax.

4. If you are sure that the slave started out perfectly synchronized with the master, and that no one
has updated the tables involved outside of the slave thread, then presumably the discrepancy is the
result of a bug. If you are running the most recent version of MySQL, please report the problem. If
you are running an older version, try upgrading to the latest production release to determine whether
the problem persists.

4.5 How to Report Replication Bugs or Problems
When you have determined that there is no user error involved, and replication still either does not work
at all or is unstable, it is time to send us a bug report. We need to obtain as much information as possible
from you to be able to track down the bug. Please spend some time and effort in preparing a good bug
report.

If you have a repeatable test case that demonstrates the bug, please enter it into our bugs database using
the instructions given in How to Report Bugs or Problems. If you have a “phantom” problem (one that you
cannot duplicate at will), use the following procedure:

1. Verify that no user error is involved. For example, if you update the slave outside of the slave thread,
the data goes out of synchrony, and you can have unique key violations on updates. In this case, the
slave thread stops and waits for you to clean up the tables manually to bring them into synchrony. This
is not a replication problem. It is a problem of outside interference causing replication to fail.

2. Run the slave with the --log-slave-updates and --log-bin options. These options cause the
slave to log the updates that it receives from the master into its own binary logs.

3. Save all evidence before resetting the replication state. If we have no information or only sketchy
information, it becomes difficult or impossible for us to track down the problem. The evidence you
should collect is:

• All binary log files from the master

• All binary log files from the slave

• The output of SHOW MASTER STATUS from the master at the time you discovered the problem

• The output of SHOW SLAVE STATUS from the slave at the time you discovered the problem

• Error logs from the master and the slave

4. Use mysqlbinlog to examine the binary logs. The following should be helpful to find the problem
statement. log_file and log_pos are the Master_Log_File and Read_Master_Log_Pos values
from SHOW SLAVE STATUS.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_last-insert-id
http://dev.mysql.com/doc/refman/5.5/en/information-functions.html#function_last-insert-id
http://dev.mysql.com/doc/refman/5.5/en/set-global-sql-slave-skip-counter.html
http://dev.mysql.com/doc/refman/5.5/en/bug-reports.html
http://dev.mysql.com/doc/refman/5.5/en/show-master-status.html
http://dev.mysql.com/doc/refman/5.5/en/show-slave-status.html
http://dev.mysql.com/doc/refman/5.5/en/show-slave-status.html

How to Report Replication Bugs or Problems

134

shell> mysqlbinlog --start-position=log_pos log_file | head

After you have collected the evidence for the problem, try to isolate it as a separate test case first. Then
enter the problem with as much information as possible into our bugs database using the instructions at
How to Report Bugs or Problems.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/bug-reports.html

135

Chapter 5 Replication Implementation

Table of Contents
5.1 Replication Implementation Details .. 135
5.2 Replication Relay and Status Logs .. 137

5.2.1 The Slave Relay Log ... 137
5.2.2 Slave Status Logs .. 138

5.3 How Servers Evaluate Replication Filtering Rules .. 140
5.3.1 Evaluation of Database-Level Replication and Binary Logging Options 141
5.3.2 Evaluation of Table-Level Replication Options ... 143
5.3.3 Replication Rule Application ... 145

Replication is based on the master server keeping track of all changes to its databases (updates, deletes,
and so on) in its binary log. The binary log serves as a written record of all events that modify database
structure or content (data) from the moment the server was started. Typically, SELECT statements are not
recorded because they modify neither database structure nor content.

Each slave that connects to the master requests a copy of the binary log. That is, it pulls the data from the
master, rather than the master pushing the data to the slave. The slave also executes the events from the
binary log that it receives. This has the effect of repeating the original changes just as they were made
on the master. Tables are created or their structure modified, and data is inserted, deleted, and updated
according to the changes that were originally made on the master.

Because each slave is independent, the replaying of the changes from the master's binary log occurs
independently on each slave that is connected to the master. In addition, because each slave receives a
copy of the binary log only by requesting it from the master, the slave is able to read and update the copy
of the database at its own pace and can start and stop the replication process at will without affecting the
ability to update to the latest database status on either the master or slave side.

For more information on the specifics of the replication implementation, see Section 5.1, “Replication
Implementation Details”.

Masters and slaves report their status in respect of the replication process regularly so that you can
monitor them. See Examining Thread Information, for descriptions of all replicated-related states.

The master binary log is written to a local relay log on the slave before it is processed. The slave also
records information about the current position with the master's binary log and the local relay log. See
Section 5.2, “Replication Relay and Status Logs”.

Database changes are filtered on the slave according to a set of rules that are applied according to the
various configuration options and variables that control event evaluation. For details on how these rules are
applied, see Section 5.3, “How Servers Evaluate Replication Filtering Rules”.

5.1 Replication Implementation Details

MySQL replication capabilities are implemented using three threads, one on the master server and two on
the slave:

• Binlog dump thread. The master creates a thread to send the binary log contents to a slave when
the slave connects. This thread can be identified in the output of SHOW PROCESSLIST on the master as
the Binlog Dump thread.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/thread-information.html
http://dev.mysql.com/doc/refman/5.5/en/show-processlist.html

Replication Implementation Details

136

The binary log dump thread acquires a lock on the master's binary log for reading each event that is to
be sent to the slave. As soon as the event has been read, the lock is released, even before the event is
sent to the slave.

• Slave I/O thread. When a START SLAVE statement is issued on a slave server, the slave creates an
I/O thread, which connects to the master and asks it to send the updates recorded in its binary logs.

The slave I/O thread reads the updates that the master's Binlog Dump thread sends (see previous
item) and copies them to local files that comprise the slave's relay log.

The state of this thread is shown as Slave_IO_running in the output of SHOW SLAVE STATUS or as
Slave_running in the output of SHOW STATUS.

• Slave SQL thread. The slave creates an SQL thread to read the relay log that is written by the slave
I/O thread and execute the events contained therein.

In the preceding description, there are three threads per master/slave connection. A master that has
multiple slaves creates one binary log dump thread for each currently connected slave, and each slave has
its own I/O and SQL threads.

A slave uses two threads to separate reading updates from the master and executing them into
independent tasks. Thus, the task of reading statements is not slowed down if statement execution is slow.
For example, if the slave server has not been running for a while, its I/O thread can quickly fetch all the
binary log contents from the master when the slave starts, even if the SQL thread lags far behind. If the
slave stops before the SQL thread has executed all the fetched statements, the I/O thread has at least
fetched everything so that a safe copy of the statements is stored locally in the slave's relay logs, ready for
execution the next time that the slave starts. This enables the master server to purge its binary logs sooner
because it no longer needs to wait for the slave to fetch their contents.

The SHOW PROCESSLIST statement provides information that tells you what is happening on the master
and on the slave regarding replication. For information on master states, see Replication Master Thread
States. For slave states, see Replication Slave I/O Thread States, and Replication Slave SQL Thread
States.

The following example illustrates how the three threads show up in the output from SHOW PROCESSLIST.

On the master server, the output from SHOW PROCESSLIST looks like this:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
 Id: 2
 User: root
 Host: localhost:32931
 db: NULL
Command: Binlog Dump
 Time: 94
 State: Has sent all binlog to slave; waiting for binlog to
 be updated
 Info: NULL

Here, thread 2 is a Binlog Dump replication thread that services a connected slave. The State
information indicates that all outstanding updates have been sent to the slave and that the master is
waiting for more updates to occur. If you see no Binlog Dump threads on a master server, this means
that replication is not running; that is, no slaves are currently connected.

On a slave server, the output from SHOW PROCESSLIST looks like this:

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/start-slave.html
http://dev.mysql.com/doc/refman/5.5/en/show-slave-status.html
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html#statvar_Slave_running
http://dev.mysql.com/doc/refman/5.5/en/show-status.html
http://dev.mysql.com/doc/refman/5.5/en/show-processlist.html
http://dev.mysql.com/doc/refman/5.5/en/master-thread-states.html
http://dev.mysql.com/doc/refman/5.5/en/master-thread-states.html
http://dev.mysql.com/doc/refman/5.5/en/slave-io-thread-states.html
http://dev.mysql.com/doc/refman/5.5/en/slave-sql-thread-states.html
http://dev.mysql.com/doc/refman/5.5/en/slave-sql-thread-states.html
http://dev.mysql.com/doc/refman/5.5/en/show-processlist.html
http://dev.mysql.com/doc/refman/5.5/en/show-processlist.html
http://dev.mysql.com/doc/refman/5.5/en/show-processlist.html

Replication Relay and Status Logs

137

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
 Id: 10
 User: system user
 Host:
 db: NULL
Command: Connect
 Time: 11
 State: Waiting for master to send event
 Info: NULL
*************************** 2. row ***************************
 Id: 11
 User: system user
 Host:
 db: NULL
Command: Connect
 Time: 11
 State: Has read all relay log; waiting for the slave I/O
 thread to update it
 Info: NULL

The State information indicates that thread 10 is the I/O thread that is communicating with the master
server, and thread 11 is the SQL thread that is processing the updates stored in the relay logs. At the time
that SHOW PROCESSLIST was run, both threads were idle, waiting for further updates.

The value in the Time column can show how late the slave is compared to the master. See MySQL 5.5
FAQ: Replication. If sufficient time elapses on the master side without activity on the Binlog Dump
thread, the master determines that the slave is no longer connected. As for any other client connection,
the timeouts for this depend on the values of net_write_timeout and net_retry_count; for more
information about these, see Server System Variables.

The SHOW SLAVE STATUS statement provides additional information about replication processing on a
slave server. See Section 2.4.1, “Checking Replication Status”.

5.2 Replication Relay and Status Logs
During replication, a slave server creates several logs that hold the binary log events relayed from the
master to the slave, and to record information about the current status and location within the relay log.
There are three types of logs used in the process, listed here:

• The relay log consists of the events read from the binary log of the master and written by the slave I/O
thread. Events in the relay log are executed on the slave as part of the SQL thread.

• The master info log contains status and current configuration information for the slave's connection to the
master. This log holds information on the master host name, login credentials, and coordinates indicating
how far the slave has read from the master's binary log.

• The relay log info log holds status information about the execution point within the slave's relay log.

5.2.1 The Slave Relay Log

The relay log, like the binary log, consists of a set of numbered files containing events that describe
database changes, and an index file that contains the names of all used relay log files.

The term “relay log file” generally denotes an individual numbered file containing database events. The
term “relay log” collectively denotes the set of numbered relay log files plus the index file.

Relay log files have the same format as binary log files and can be read using mysqlbinlog (see
mysqlbinlog — Utility for Processing Binary Log Files).

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/show-processlist.html
http://dev.mysql.com/doc/refman/5.5/en/faqs-replication.html
http://dev.mysql.com/doc/refman/5.5/en/faqs-replication.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html
http://dev.mysql.com/doc/refman/5.5/en/show-slave-status.html
http://dev.mysql.com/doc/refman/5.5/en/mysqlbinlog.html

Slave Status Logs

138

By default, relay log file names have the form host_name-relay-bin.nnnnnn in the data directory,
where host_name is the name of the slave server host and nnnnnn is a sequence number. Successive
relay log files are created using successive sequence numbers, beginning with 000001. The slave uses an
index file to track the relay log files currently in use. The default relay log index file name is host_name-
relay-bin.index in the data directory.

The default relay log file and relay log index file names can be overridden with, respectively, the --relay-
log and --relay-log-index server options (see Section 2.3, “Replication and Binary Logging Options
and Variables”).

If a slave uses the default host-based relay log file names, changing a slave's host name after replication
has been set up can cause replication to fail with the errors Failed to open the relay log and
Could not find target log during relay log initialization. This is a known issue
(see Bug #2122). If you anticipate that a slave's host name might change in the future (for example, if
networking is set up on the slave such that its host name can be modified using DHCP), you can avoid
this issue entirely by using the --relay-log and --relay-log-index options to specify relay log file
names explicitly when you initially set up the slave. This will make the names independent of server host
name changes.

If you encounter the issue after replication has already begun, one way to work around it is to stop the
slave server, prepend the contents of the old relay log index file to the new one, and then restart the slave.
On a Unix system, this can be done as shown here:

shell> cat new_relay_log_name.index >> old_relay_log_name.index
shell> mv old_relay_log_name.index new_relay_log_name.index

A slave server creates a new relay log file under the following conditions:

• Each time the I/O thread starts.

• When the logs are flushed; for example, with FLUSH LOGS or mysqladmin flush-logs.

• When the size of the current relay log file becomes “too large,” determined as follows:

• If the value of max_relay_log_size is greater than 0, that is the maximum relay log file size.

• If the value of max_relay_log_size is 0, max_binlog_size determines the maximum relay log
file size.

The SQL thread automatically deletes each relay log file as soon as it has executed all events in the file
and no longer needs it. There is no explicit mechanism for deleting relay logs because the SQL thread
takes care of doing so. However, FLUSH LOGS rotates relay logs, which influences when the SQL thread
deletes them.

5.2.2 Slave Status Logs

A replication slave server creates two logs. By default, these logs are files named master.info and
relay-log.info and created in the data directory. The names and locations of these files can be
changed by using the --master-info-file and --relay-log-info-file options, respectively. See
Section 2.3, “Replication and Binary Logging Options and Variables”.

The two status logs contain information like that shown in the output of the SHOW SLAVE STATUS
statement, which is discussed in SQL Statements for Controlling Slave Servers. Because the status logs
are stored on disk, they survive a slave server's shutdown. The next time the slave starts up, it reads the
two logs to determine how far it has proceeded in reading binary logs from the master and in processing its
own relay logs.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_relay_log_size
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_relay_log_size
http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/show-slave-status.html
http://dev.mysql.com/doc/refman/5.5/en/replication-slave-sql.html

Slave Status Logs

139

The master info log should be protected because it contains the password for connecting to the master.
See Passwords and Logging.

The slave I/O thread updates the master info log. The following table shows the correspondence between
the lines in the master.info file and the columns displayed by SHOW SLAVE STATUS.

Line in
master.info

SHOW SLAVE STATUS Column Description

1 Number of lines in the file

2 Master_Log_File The name of the master binary log currently
being read from the master

3 Read_Master_Log_Pos The current position within the master binary
log that have been read from the master

4 Master_Host The host name of the master

5 Master_User The user name used to connect to the master

6 Password (not shown by SHOW SLAVE
STATUS)

The password used to connect to the master

7 Master_Port The network port used to connect to the
master

8 Connect_Retry The period (in seconds) that the slave will wait
before trying to reconnect to the master

9 Master_SSL_Allowed Indicates whether the server supports SSL
connections

10 Master_SSL_CA_File The file used for the Certificate Authority (CA)
certificate

11 Master_SSL_CA_Path The path to the Certificate Authority (CA)
certificates

12 Master_SSL_Cert The name of the SSL certificate file

13 Master_SSL_Cipher The list of possible ciphers used in the
handshake for the SSL connection

14 Master_SSL_Key The name of the SSL key file

15 Master_SSL_Verify_Server_Cert Whether to verify the server certificate

17 Replicate_Ignore_Server_Ids The number of server IDs to be ignored,
followed by the actual server IDs

The slave SQL thread updates the relay log info log. The following table shows the correspondence
between the lines in the relay-log.info file and the columns displayed by SHOW SLAVE STATUS.

Line in
relay-
log.info

SHOW SLAVE STATUS Column Description

1 Relay_Log_File The name of the current relay log file

2 Relay_Log_Pos The current position within the relay log file; events
up to this position have been executed on the slave
database

3 Relay_Master_Log_File The name of the master binary log file from which
the events in the relay log file were read

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/password-logging.html
http://dev.mysql.com/doc/refman/5.5/en/show-slave-status.html
http://dev.mysql.com/doc/refman/5.5/en/show-slave-status.html
http://dev.mysql.com/doc/refman/5.5/en/show-slave-status.html
http://dev.mysql.com/doc/refman/5.5/en/show-slave-status.html

How Servers Evaluate Replication Filtering Rules

140

Line in
relay-
log.info

SHOW SLAVE STATUS Column Description

4 Exec_Master_Log_Pos The equivalent position within the master's binary
log file of events that have already been executed

The contents of the relay-log.info file and the states shown by the SHOW SLAVE STATUS statement
might not match if the relay-log.info file has not been flushed to disk. Ideally, you should only view
relay-log.info on a slave that is offline (that is, mysqld is not running). For a running system, SHOW
SLAVE STATUS should be used.

When you back up the slave's data, you should back up these two status logs, along with the relay log files.
The status logs are needed to resume replication after you restore the data from the slave. If you lose the
relay logs but still have the relay log info log, you can check it to determine how far the SQL thread has
executed in the master binary logs. Then you can use CHANGE MASTER TO with the MASTER_LOG_FILE
and MASTER_LOG_POS options to tell the slave to re-read the binary logs from that point. Of course, this
requires that the binary logs still exist on the master.

5.3 How Servers Evaluate Replication Filtering Rules
If a master server does not write a statement to its binary log, the statement is not replicated. If the server
does log the statement, the statement is sent to all slaves and each slave determines whether to execute it
or ignore it.

On the master, you can control which databases to log changes for by using the --binlog-do-db and
--binlog-ignore-db options to control binary logging. For a description of the rules that servers use in
evaluating these options, see Section 5.3.1, “Evaluation of Database-Level Replication and Binary Logging
Options”. You should not use these options to control which databases and tables are replicated. Instead,
use filtering on the slave to control the events that are executed on the slave.

On the slave side, decisions about whether to execute or ignore statements received from the master
are made according to the --replicate-* options that the slave was started with. (See Section 2.3,
“Replication and Binary Logging Options and Variables”.)

In the simplest case, when there are no --replicate-* options, the slave executes all statements that it
receives from the master. Otherwise, the result depends on the particular options given.

Database-level options (--replicate-do-db, --replicate-ignore-db) are checked first; see
Section 5.3.1, “Evaluation of Database-Level Replication and Binary Logging Options”, for a description
of this process. If no database-level options are used, option checking proceeds to any table-level options
that may be in use (see Section 5.3.2, “Evaluation of Table-Level Replication Options”, for a discussion
of these). If one or more database-level options are used but none are matched, the statement is not
replicated.

To make it easier to determine what effect an option set will have, it is recommended that you avoid mixing
“do” and “ignore” options, or wildcard and nonwildcard options. An example of the latter that may have
unintended effects is the use of --replicate-do-db and --replicate-wild-do-table together,
where --replicate-wild-do-table uses a pattern for the database name that matches the name
given for --replicate-do-db. Suppose a replication slave is started with --replicate-do-db=dbx
--replicate-wild-do-table=db%.t1. Then, suppose that on the master, you issue the statement
CREATE DATABASE dbx. Although you might expect it, this statement is not replicated because it does
not reference a table named t1.

If any --replicate-rewrite-db options were specified, they are applied before the --replicate-*
filtering rules are tested.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/show-slave-status.html
http://dev.mysql.com/doc/refman/5.5/en/show-slave-status.html
http://dev.mysql.com/doc/refman/5.5/en/show-slave-status.html
http://dev.mysql.com/doc/refman/5.5/en/change-master-to.html
http://dev.mysql.com/doc/refman/5.5/en/create-database.html

Evaluation of Database-Level Replication and Binary Logging Options

141

Note

Database-level filtering options are case-sensitive on platforms supporting case
sensitivity in filenames, whereas table-level filtering options are not (regardless of
platform). This is true regardless of the value of the lower_case_table_names
system variable.

5.3.1 Evaluation of Database-Level Replication and Binary Logging Options

When evaluating replication options, the slave begins by checking to see whether there are any --
replicate-do-db or --replicate-ignore-db options that apply. When using --binlog-do-db or
--binlog-ignore-db, the process is similar, but the options are checked on the master.

With statement-based replication, the default database is checked for a match. With row-based replication,
the database where data is to be changed is the database that is checked. Regardless of the binary
logging format, checking of database-level options proceeds as shown in the following diagram.

The steps involved are listed here:

1. Are there any --replicate-do-db options?

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_lower_case_table_names

Evaluation of Database-Level Replication and Binary Logging Options

142

• Yes. Do any of them match the database?

• Yes. Execute the statement and exit.

• No. Ignore the statement and exit.

• No. Continue to step 2.

2. Are there any --replicate-ignore-db options?

• Yes. Do any of them match the database?

• Yes. Ignore the statement and exit.

• No. Continue to step 3.

• No. Continue to step 3.

3. Proceed to checking the table-level replication options, if there are any. For a description of how these
options are checked, see Section 5.3.2, “Evaluation of Table-Level Replication Options”.

Important

A statement that is still permitted at this stage is not yet actually executed. The
statement is not executed until all table-level options (if any) have also been
checked, and the outcome of that process permits execution of the statement.

For binary logging, the steps involved are listed here:

1. Are there any --binlog-do-db or --binlog-ignore-db options?

• Yes. Continue to step 2.

• No. Log the statement and exit.

2. Is there a default database (has any database been selected by USE)?

• Yes. Continue to step 3.

• No. Ignore the statement and exit.

3. There is a default database. Are there any --binlog-do-db options?

• Yes. Do any of them match the database?

• Yes. Log the statement and exit.

• No. Ignore the statement and exit.

• No. Continue to step 4.

4. Do any of the --binlog-ignore-db options match the database?

• Yes. Ignore the statement and exit.

• No. Log the statement and exit.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/use.html

Evaluation of Table-Level Replication Options

143

Important

For statement-based logging, an exception is made in the rules just given for the
CREATE DATABASE, ALTER DATABASE, and DROP DATABASE statements. In
those cases, the database being created, altered, or dropped replaces the default
database when determining whether to log or ignore updates.

--binlog-do-db can sometimes mean “ignore other databases”. For example, when using statement-
based logging, a server running with only --binlog-do-db=sales does not write to the binary log
statements for which the default database differs from sales. When using row-based logging with the
same option, the server logs only those updates that change data in sales.

5.3.2 Evaluation of Table-Level Replication Options

The slave checks for and evaluates table options only if either of the following two conditions is true:

• No matching database options were found.

• One or more database options were found, and were evaluated to arrive at an “execute” condition
according to the rules described in the previous section (see Section 5.3.1, “Evaluation of Database-
Level Replication and Binary Logging Options”).

First, as a preliminary condition, the slave checks whether statement-based replication is enabled. If so,
and the statement occurs within a stored function, the slave executes the statement and exits. If row-based
replication is enabled, the slave does not know whether a statement occurred within a stored function on
the master, so this condition does not apply.

Note

For statement-based replication, replication events represent statements (all
changes making up a given event are associated with a single SQL statement); for
row-based replication, each event represents a change in a single table row (thus
a single statement such as UPDATE mytable SET mycol = 1 may yield many
row-based events). When viewed in terms of events, the process of checking table
options is the same for both row-based and statement-based replication.

Having reached this point, if there are no table options, the slave simply executes all events. If there are
any --replicate-do-table or --replicate-wild-do-table options, the event must match one of
these if it is to be executed; otherwise, it is ignored. If there are any --replicate-ignore-table or --
replicate-wild-ignore-table options, all events are executed except those that match any of these
options. This process is illustrated in the following diagram.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/create-database.html
http://dev.mysql.com/doc/refman/5.5/en/alter-database.html
http://dev.mysql.com/doc/refman/5.5/en/drop-database.html

Evaluation of Table-Level Replication Options

144

The following steps describe this evaluation in more detail:

www.EngineeringBooksPdf.com

Replication Rule Application

145

1. Are there any table options?

• Yes. Continue to step 2.

• No. Execute the event and exit.

2. Are there any --replicate-do-table options?

• Yes. Does the table match any of them?

• Yes. Execute the event and exit.

• No. Continue to step 3.

• No. Continue to step 3.

3. Are there any --replicate-ignore-table options?

• Yes. Does the table match any of them?

• Yes. Ignore the event and exit.

• No. Continue to step 4.

• No. Continue to step 4.

4. Are there any --replicate-wild-do-table options?

• Yes. Does the table match any of them?

• Yes. Execute the event and exit.

• No. Continue to step 5.

• No. Continue to step 5.

5. Are there any --replicate-wild-ignore-table options?

• Yes. Does the table match any of them?

• Yes. Ignore the event and exit.

• No. Continue to step 6.

• No. Continue to step 6.

6. Are there any --replicate-do-table or --replicate-wild-do-table options?

• Yes. Ignore the event and exit.

• No. Execute the event and exit.

5.3.3 Replication Rule Application

This section provides additional explanation and examples of usage for different combinations of
replication filtering options.

Some typical combinations of replication filter rule types are given in the following table:

www.EngineeringBooksPdf.com

Replication Rule Application

146

Condition (Types of Options) Outcome

No --replicate-* options at all: The slave executes all events that it receives from the master.

--replicate-*-db options, but no
table options:

The slave accepts or ignores events using the database
options. It executes all events permitted by those options
because there are no table restrictions.

--replicate-*-table options, but no
database options:

All events are accepted at the database-checking stage
because there are no database conditions. The slave executes
or ignores events based solely on the table options.

A combination of database and table
options:

The slave accepts or ignores events using the database
options. Then it evaluates all events permitted by those options
according to the table options. This can sometimes lead to
results that seem counterintuitive, and that may be different
depending on whether you are using statement-based or row-
based replication; see the text for an example.

A more complex example follows, in which we examine the outcomes for both statement-based and row-
based settings.

Suppose that we have two tables mytbl1 in database db1 and mytbl2 in database db2 on the master,
and the slave is running with the following options (and no other replication filtering options):

replicate-ignore-db = db1
replicate-do-table = db2.tbl2

Now we execute the following statements on the master:

USE db1;
INSERT INTO db2.tbl2 VALUES (1);

The results on the slave vary considerably depending on the binary log format, and may not match initial
expectations in either case.

Statement-based replication. The USE statement causes db1 to be the default database. Thus the --
replicate-ignore-db option matches, and the INSERT statement is ignored. The table options are not
checked.

Row-based replication. The default database has no effect on how the slave reads database
options when using row-based replication. Thus, the USE statement makes no difference in how the --
replicate-ignore-db option is handled: the database specified by this option does not match the
database where the INSERT statement changes data, so the slave proceeds to check the table options.
The table specified by --replicate-do-table matches the table to be updated, and the row is
inserted.

www.EngineeringBooksPdf.com

http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/use.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html

	MySQL Replication
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Replication
	Chapter 2 Replication Configuration
	2.1 How to Set Up Replication
	2.1.1 Setting the Replication Master Configuration
	2.1.2 Setting the Replication Slave Configuration
	2.1.3 Creating a User for Replication
	2.1.4 Obtaining the Replication Master Binary Log Coordinates
	2.1.5 Creating a Data Snapshot Using mysqldump
	2.1.6 Creating a Data Snapshot Using Raw Data Files
	2.1.7 Setting Up Replication with New Master and Slaves
	2.1.8 Setting Up Replication with Existing Data
	2.1.9 Introducing Additional Slaves to an Existing Replication Environment
	2.1.10 Setting the Master Configuration on the Slave

	2.2 Replication Formats
	2.2.1 Advantages and Disadvantages of Statement-Based and Row-Based Replication
	2.2.2 Usage of Row-Based Logging and Replication
	2.2.3 Determination of Safe and Unsafe Statements in Binary Logging

	2.3 Replication and Binary Logging Options and Variables
	2.3.1 Replication and Binary Logging Option and Variable Reference
	2.3.2 Replication Master Options and Variables
	2.3.3 Replication Slave Options and Variables
	2.3.4 Binary Log Options and Variables

	2.4 Common Replication Administration Tasks
	2.4.1 Checking Replication Status
	2.4.2 Pausing Replication on the Slave

	Chapter 3 Replication Solutions
	3.1 Using Replication for Backups
	3.1.1 Backing Up a Slave Using mysqldump
	3.1.2 Backing Up Raw Data from a Slave
	3.1.3 Backing Up a Master or Slave by Making It Read Only

	3.2 Using Replication with Different Master and Slave Storage Engines
	3.3 Using Replication for Scale-Out
	3.4 Replicating Different Databases to Different Slaves
	3.5 Improving Replication Performance
	3.6 Switching Masters During Failover
	3.7 Setting Up Replication to Use Secure Connections
	3.8 Semisynchronous Replication
	3.8.1 Semisynchronous Replication Administrative Interface
	3.8.2 Semisynchronous Replication Installation and Configuration
	3.8.3 Semisynchronous Replication Monitoring

	Chapter 4 Replication Notes and Tips
	4.1 Replication Features and Issues
	4.1.1 Replication and AUTO_INCREMENT
	4.1.2 Replication and BLACKHOLE Tables
	4.1.3 Replication and Character Sets
	4.1.4 Replication and CHECKSUM TABLE
	4.1.5 Replication of CREATE ... IF NOT EXISTS Statements
	4.1.6 Replication of CREATE TABLE ... SELECT Statements
	4.1.7 Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER
	4.1.8 Replication of CURRENT_USER()
	4.1.9 Replication of DROP ... IF EXISTS Statements
	4.1.10 Replication with Differing Table Definitions on Master and Slave
	4.1.10.1 Replication with More Columns on Master or Slave
	4.1.10.2 Replication of Columns Having Different Data Types

	4.1.11 Replication and DIRECTORY Table Options
	4.1.12 Replication of Invoked Features
	4.1.13 Replication and Floating-Point Values
	4.1.14 Replication and FLUSH
	4.1.15 Replication and System Functions
	4.1.16 Replication and LIMIT
	4.1.17 Replication and LOAD DATA INFILE
	4.1.18 Replication and the Slow Query Log
	4.1.19 Replication and Partitioning
	4.1.20 Replication and REPAIR TABLE
	4.1.21 Replication and Master or Slave Shutdowns
	4.1.22 Replication and max_allowed_packet
	4.1.23 Replication and MEMORY Tables
	4.1.24 Replication and Temporary Tables
	4.1.25 Replication of the mysql System Database
	4.1.26 Replication and the Query Optimizer
	4.1.27 Replication and Reserved Words
	4.1.28 SET PASSWORD and Row-Based Replication
	4.1.29 Slave Errors During Replication
	4.1.30 Replication of Server-Side Help Tables
	4.1.31 Replication and Server SQL Mode
	4.1.32 Replication Retries and Timeouts
	4.1.33 Replication and TIMESTAMP
	4.1.34 Replication and Time Zones
	4.1.35 Replication and Transactions
	4.1.36 Replication and Triggers
	4.1.37 Replication and TRUNCATE TABLE
	4.1.38 Replication and Variables
	4.1.39 Replication and Views

	4.2 Replication Compatibility Between MySQL Versions
	4.3 Upgrading a Replication Setup
	4.4 Troubleshooting Replication
	4.5 How to Report Replication Bugs or Problems

	Chapter 5 Replication Implementation
	5.1 Replication Implementation Details
	5.2 Replication Relay and Status Logs
	5.2.1 The Slave Relay Log
	5.2.2 Slave Status Logs

	5.3 How Servers Evaluate Replication Filtering Rules
	5.3.1 Evaluation of Database-Level Replication and Binary Logging Options
	5.3.2 Evaluation of Table-Level Replication Options
	5.3.3 Replication Rule Application

